MI Cable Thermocouple Assemblies

Style MTA7 Connection Head with 1/2" NPT Pipe Nipple

Design Features
- Tempo’s connection heads are gasketed to seal against moisture, dust and corrosive or hostile atmospheres.
- Screw covers are attached to body with a plated chain.
- Covers have lugs for tightening or loosening with a screwdriver or wrench.
- Available in single (2-wire) or duplex (4-wire).
- Tempo’s connection heads are available in die cast aluminum, Bakelite and cast iron in a variety of sizes from miniature to confined areas to the large universal head designed for heavy process and industrial applications. See sensor accessories on pages 14-98 through 14-100 for complete information.
- Pipe nipple is galvanized steel.

Ordering Information
Thermocouples are offered with the options listed in the worksheet below. Create an ordering code by filling in the boxes with the appropriate number and/or letter designation for your requirements, and a part number will be assigned.

Ordering Code:

- MTA7
-
- 1 2 3 4 5 6 7 8 9 10 11 12

Calibration Code box 1
- ANSI Standard Tolerances
 - J K E T N R S B
- Special Tolerances 3 4 5 6 7

Number of Conductors box 2
- 2 = Single (Standard)
- 4 = Duplex

Insulation box 3
- M = 96% min. MgO (Standard)
- H = 99.4% min. MgO

Sheath Material box 4
- A = Alloy 600
- B = 304 SS
- C = 316 SS

Sheath O.D. box 5
- F = .125" ±.002
- G = .188" ±.002
- H = .250" +.003/-002
- J = .313" +.003/-002
- K = .375" +.003/-002

Sheath Length “L1” box 6
- Whole inches 01 to 99
- For lengths over 99 in. consult TEMPCO.

Sheath Length “L1” box 7
- Fractional inches
 - 0 = 0" 3 = 3/8"
 - 1 = 1/8" 4 = 1/2"
 - 2 = 1/4" 5 = 5/8"

“L2” 1/2” NPT Nipple Length box 10
- Whole inches 00 to 99
- For lengths over 99 in. consult TEMPCO.
- Standard Lengths S1 = 1", S2 = 2-1/2", S3 = 5-1/2"

Spring-Loaded Terminal Block box 11
- O = Not required
- Y = Required

Special Requirements box 12
- X = Specify
- 0 = None

Note: Conduit connection for A, F, H & S is 1/2" (3/4" is available); for B & C is 3/8"; and for P is 3/4" NPT.

For overall dimensions see pages 14-98 through 14-100.

WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov.

View Product Inventory @ www.tempco.com
Temperature Sensing

MI Cable Thermocouple Assemblies

Mineral Insulated Metal-Sheathed Cable

Thermocouple Assemblies are made from TEMPCO’s high quality Tempco-Pak and will incorporate all the same outstanding features.

Important Features:

✴ Accurate
✴ High Temperature Rating
✴ Fast Response
✴ Moisture Proof
✴ Thermal Shock Resistant
✴ Can Be Formed
✴ Weldable
✴ High Pressure Rated
✴ Compact
✴ Durable

Typical Applications

➔ Bearing Temperature
➔ Diesel Engines
➔ Food Processing
➔ Furnaces
➔ Glass Manufacturing
➔ Heat Treating
➔ Kilns
➔ Metal Processing
➔ Oil Processing
➔ Ovens
➔ Petrochemicals
➔ Power Stations
➔ Refineries
➔ Research Laboratories
➔ Steam Generators
➔ Turbines

Hot Junctions

(Hot or Measuring Junctions available on single or dual element cable)

Choose the measuring junction that best suits your particular needs:

Exposed Junction (E)

Thermocouple wires are butt-welded. Insulation is sealed against liquid or gas penetration prior to use. This junction style provides the fastest possible response time but leaves the thermocouple wires unprotected against corrosive or mechanical damage.

Grounded Junction (G)

The sheath and thermocouple wires are welded together, forming a completely sealed integral junction. Recommended in presence of liquids, moisture, gas or high pressure. The wire is protected from corrosive or erosive conditions. In the Grounded Junction, response time approaches that of the Exposed Junction.

Ungrounded Junction (U)

Thermocouple junction is fully insulated from welded sheath end. Excellent for applications where stray emf’s would affect the reading and for frequent or rapid temperature cycling. With the Ungrounded Junction, response time is slightly longer than for the Grounded Junction.

View Product Inventory @ www.tempco.com
Temperature Sensing

MI Cable Thermocouple Assemblies

Selecting the Correct Tempco-Pak Thermocouple Assembly

Thermocouples must be selected to meet the conditions of each particular application. The environment, operating temperature and atmosphere, response time and length of service must be considered when selecting the sheath, insulation, calibration, junction and termination of the thermocouple assembly.

Sheath Materials

The most commonly used sheath materials and their maximum continuous operating temperatures in an oxidizing atmosphere are as follows:

<table>
<thead>
<tr>
<th>Sheath Material</th>
<th>Max. Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy 600</td>
<td>2150°F (1177°C)</td>
</tr>
<tr>
<td>304 Stainless Steel</td>
<td>1650°F (899°C)</td>
</tr>
<tr>
<td>316 Stainless Steel</td>
<td>1650°F (899°C)</td>
</tr>
<tr>
<td>310 Stainless Steel</td>
<td>2100°F (1150°C)</td>
</tr>
</tbody>
</table>

Note: For temperatures exceeding 2200°F (1204°C), Noble or Refractory metal sheaths are normally used.

Formability

Because Tempco-Pak is fully annealed it can normally be formed around a mandrel 4 times the sheath diameter. Consult TEMPCO if special forming is required.

Weldability

The thermocouple sheath can be brazed, soldered or welded. Welding the thermocouple sheath in the field is not recommended on diameters less than .093 in. All welding should be done in an inert atmosphere.

Assembly Tolerances:
Sheath Length Dimensions

<table>
<thead>
<tr>
<th>Sheath O.D.</th>
<th>“L” Tolerance Up to 24"</th>
<th>“L” Tolerance Over 24"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to .038"</td>
<td>±1/16"</td>
<td>±2%</td>
</tr>
<tr>
<td>.038" to .065"</td>
<td>±1/8"</td>
<td>±11/2%</td>
</tr>
<tr>
<td>Larger than .065"</td>
<td>±1/8"</td>
<td>±1%</td>
</tr>
</tbody>
</table>

Flexible Lead Dimensions

<table>
<thead>
<tr>
<th>Lead Length (ft.)</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 5</td>
<td>+6", -1"</td>
</tr>
<tr>
<td>5 to 10</td>
<td>+6", -2"</td>
</tr>
<tr>
<td>over 10</td>
<td>+5%, -2%</td>
</tr>
</tbody>
</table>