Percent of Rated Wattage for Various Applied Voltages

<table>
<thead>
<tr>
<th>Applied Voltage</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>208</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>277</th>
<th>380</th>
<th>415</th>
<th>440</th>
<th>460</th>
<th>480</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>100%</td>
<td>109%</td>
<td>100%</td>
<td>92%</td>
<td>100%</td>
<td>99%</td>
<td>91%</td>
<td>28%</td>
<td>16%</td>
<td>8.4%</td>
<td>7%</td>
<td>6.3%</td>
<td>5.7%</td>
<td>4%</td>
</tr>
<tr>
<td>115</td>
<td>100%</td>
<td>100%</td>
<td>92%</td>
<td>31%</td>
<td>100%</td>
<td>100%</td>
<td>91%</td>
<td>63%</td>
<td>34%</td>
<td>28%</td>
<td>25%</td>
<td>23%</td>
<td>21%</td>
<td>16%</td>
</tr>
<tr>
<td>120</td>
<td>300%</td>
<td>33%</td>
<td>30%</td>
<td>28%</td>
<td>99%</td>
<td>92%</td>
<td>100%</td>
<td>91%</td>
<td>53%</td>
<td>45%</td>
<td>36%</td>
<td>33%</td>
<td>25%</td>
<td>19%</td>
</tr>
<tr>
<td>208</td>
<td>112%</td>
<td>122%</td>
<td>100%</td>
</tr>
<tr>
<td>220</td>
<td>111%</td>
<td>119%</td>
<td>91%</td>
<td>92%</td>
<td>75%</td>
<td>56%</td>
<td>30%</td>
<td>25%</td>
<td>11%</td>
<td>10%</td>
<td>9%</td>
<td>8%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>230</td>
<td>120%</td>
<td>120%</td>
<td>91%</td>
<td>92%</td>
<td>75%</td>
<td>56%</td>
<td>30%</td>
<td>25%</td>
<td>11%</td>
<td>10%</td>
<td>9%</td>
<td>8%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>240</td>
<td>133%</td>
<td>133%</td>
<td>91%</td>
<td>92%</td>
<td>75%</td>
<td>56%</td>
<td>30%</td>
<td>25%</td>
<td>11%</td>
<td>10%</td>
<td>9%</td>
<td>8%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>277</td>
<td>188%</td>
<td>188%</td>
<td>84%</td>
<td>69%</td>
<td>40%</td>
<td>53%</td>
<td>45%</td>
<td>40%</td>
<td>33%</td>
<td>25%</td>
<td>19%</td>
<td>17%</td>
<td>14%</td>
<td>12%</td>
</tr>
<tr>
<td>380</td>
<td>188%</td>
<td>188%</td>
<td>84%</td>
<td>69%</td>
<td>40%</td>
<td>53%</td>
<td>45%</td>
<td>40%</td>
<td>33%</td>
<td>25%</td>
<td>19%</td>
<td>17%</td>
<td>14%</td>
<td>12%</td>
</tr>
<tr>
<td>415</td>
<td>119%</td>
<td>119%</td>
<td>91%</td>
<td>92%</td>
<td>75%</td>
<td>56%</td>
<td>30%</td>
<td>25%</td>
<td>11%</td>
<td>10%</td>
<td>9%</td>
<td>8%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>440</td>
<td>122%</td>
<td>122%</td>
<td>91%</td>
<td>92%</td>
<td>75%</td>
<td>56%</td>
<td>30%</td>
<td>25%</td>
<td>11%</td>
<td>10%</td>
<td>9%</td>
<td>8%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>460</td>
<td>133%</td>
<td>133%</td>
<td>91%</td>
<td>92%</td>
<td>75%</td>
<td>56%</td>
<td>30%</td>
<td>25%</td>
<td>11%</td>
<td>10%</td>
<td>9%</td>
<td>8%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>480</td>
<td>188%</td>
<td>188%</td>
<td>84%</td>
<td>69%</td>
<td>40%</td>
<td>53%</td>
<td>45%</td>
<td>40%</td>
<td>33%</td>
<td>25%</td>
<td>19%</td>
<td>17%</td>
<td>14%</td>
<td>12%</td>
</tr>
</tbody>
</table>

To determine the resultant wattage on a voltage not shown in the chart above, use the following formula:

\[
\text{Actual Wattage} = \frac{\text{Rated Wattage} \times (\text{Applied Voltage})^2}{(\text{Rated Voltage})^2}
\]

Applying higher than the actual rated voltage to heating elements will increase the watt density (watts/in.sq.), which can lead to premature heater failure and/or damage the material being heated.

Watt Density Calculations

Band Heaters

\[
\text{Watts/In}^2 = \frac{\text{Wattage}}{(\text{Diameter} \times 3.1416 \times \text{Width}) - (\text{Cold Area})}
\]

Mica Strip Heaters

\[
\text{Watts/In}^2 = \frac{\text{Wattage}}{\text{Heated Length} \times \text{Width}}
\]

Cartridge and Tubular Heaters

\[
\text{Watts/In}^2 = \frac{\text{Wattage}}{\text{Diameter} \times 3.1416 \times \text{Heated Length}}
\]

Channel Strip Heaters

\[
\text{Watts/In}^2 = \frac{\text{Wattage}}{\text{Heated Length} \times 3.625}
\]

Ohm's Law

- Volts: \(V = \sqrt{W \times R} \)
- Volts: \(V = \frac{W}{R} \)
- Volts: \(V = I \times R \)
- Amp: \(I = \sqrt{W \times R} \)
- Amp: \(I = \frac{W}{R} \)
- Amp: \(I = \frac{V}{R} \)
- Watts: \(W = V \times I \)
- Watts: \(W = I \times R \)
- Watts: \(W = E \times I \)
- Ohms: \(R = \frac{W}{I^2} \)
- Ohms: \(R = \frac{V}{I} \)
- Ohms: \(R = \frac{E}{I} \)