TEC-4100/7100/8100/9100
Auto-Tune PID Process
Temperature Controller
Using the Manual

- Installers ... Read Chapter 1, 2
- System Designer Read All Chapters
- Expert User ... Read Page 11

NOTE:
It is strongly recommended that a process should incorporate a LIMIT CONTROL such as the TEC-910 which will shut down the equipment at a preset process condition in order to preclude possible damage to products or system.

Information in this user's manual is subject to change without notice.

Copyright © 2019, Tempco Electric Heater Corporation, all rights reserved. No part of this publication may be reproduced, transmitted, transcribed or stored in a retrieval system, or translated into any language in any form by any means without the written permission of Tempco Electric Heater Corporation.

CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Overview</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>1-1 General</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1-2 Ordering Code</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1-3 Programming Port</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1-4 Keys and Displays</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1-5 Menu Overview</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1-6 Parameter Descriptions</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2 Installation

2-1 Unpacking 7
2-2 Mounting 7
2-3 Wiring Precautions 8
2-4 Power Wiring 9
2-5 Sensor Installation Guidelines 9
2-6 Sensor Input Wiring .. 9
2-7 Control Output Wiring .. 9
2-8 Alarm Wiring . 11
2-9 Data Communication . 11

Chapter 3 Programming

3-1 Lockout 12
3-2 Signal Input . 12
3-3 Control Outputs . 12
3-4 Alarm . 14
3-5 Configuring User Menu . 15
3-6 Ramp . 15
3-7 Dwell Timer . 15
3-8 PV Shift . 16
3-9 Digital Filter . 16
3-10 Failure Transfer . 16
3-11 Auto-tuning . 17
3-12 Manual Tuning . 17
3-13 Manual Control . 18
3-14 Data Communication . 18
3-15 Process Variable (PV) Retransmission. 18

Chapter 4 Applications

4-1 Heat Only Control With Dwell Timer . 19
4-2 Cool Only Control . 19
4-3 Heat-Cool Control . 20

Chapter 5 Not Applicable

Chapter 6 Specifications 21

Chapter 7 Modbus Comm. 23

7-1 Functions Supported .. 23
7-2 Exception Responses .. 24
7-3 Parameter Table .. 24
7-4 Data Conversion .. 26
7-5 Communication Example .. 27

Appendix

A-1 Error Codes 28
A-2 Warranty 29

Figures & Tables

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1 Fuzzy Control Advantage</td>
<td>. 1</td>
</tr>
<tr>
<td>Figure 1.2 Programming Port Overview</td>
<td>. 3</td>
</tr>
<tr>
<td>Figure 1.3 Front Panel Description</td>
<td>. 3</td>
</tr>
<tr>
<td>Figure 1.4 Display during Power UP</td>
<td>. 3</td>
</tr>
<tr>
<td>Figure 2.1 Mounting Dimensions</td>
<td>. 7</td>
</tr>
<tr>
<td>Figure 2.2 Lead Termination for TEC-4100, TEC-8100 and TEC-7100</td>
<td>. 8</td>
</tr>
<tr>
<td>Figure 2.3 Lead Termination for TEC-91000</td>
<td>. 8</td>
</tr>
<tr>
<td>Figure 2.4 Rear Terminal Connection for TEC-4100 and TEC-8100</td>
<td>. 8</td>
</tr>
<tr>
<td>Figure 2.5 Rear Terminal Connection for TEC-7100</td>
<td>. 8</td>
</tr>
<tr>
<td>Figure 2.6 Rear Terminal Connection for TEC-9100</td>
<td>. 8</td>
</tr>
<tr>
<td>Figure 2.7 Power Supply Connections</td>
<td>. 9</td>
</tr>
<tr>
<td>Figure 2.8 Sensor Input Wiring</td>
<td>. 9</td>
</tr>
<tr>
<td>Figure 2.9 Output 1 Relay or Triac (SSR) to Drive Load</td>
<td>. 9</td>
</tr>
<tr>
<td>Figure 2.10 Output 1 Relay or Triac (SSR) to Drive Contactor</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.11 Output 1 Pulsed Voltage to Drive SSR</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.12 Output 1 Linear Current</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.13 Output 1 Linear Voltage</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.14 Output 2 Relay or Triac (SSR) to Drive Load</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.15 Output 2 Relay or Triac (SSR) to Drive Contactor</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.16 Output 2 Pulsed Voltage to Drive SSR</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.17 Output 2 Linear Current</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.18 Output 2 Linear Voltage</td>
<td>. 10</td>
</tr>
<tr>
<td>Figure 2.19 Alarm Output to Drive Load</td>
<td>. 11</td>
</tr>
<tr>
<td>Figure 2.20 Alarm Output to Drive Contactor</td>
<td>. 11</td>
</tr>
<tr>
<td>Figure 2.20.1 Dwell Timer Function</td>
<td>. 11</td>
</tr>
<tr>
<td>Figure 2.21 RS-485 Wiring</td>
<td>. 11</td>
</tr>
<tr>
<td>Figure 2.22 RS-232 Wiring</td>
<td>. 11</td>
</tr>
<tr>
<td>Figure 2.23 Configuration of RS-232 Cable</td>
<td>. 11</td>
</tr>
<tr>
<td>Figure 3.1 Conversion Curve for Linear Type Process Value</td>
<td>. 12</td>
</tr>
<tr>
<td>Figure 3.2 Heat Only ON-OFF Control</td>
<td>. 13</td>
</tr>
<tr>
<td>Figure 3.3 Output 2 Deviation High Alarm</td>
<td>. 14</td>
</tr>
<tr>
<td>Figure 3.4 Output 2 Process Low Alarm</td>
<td>. 14</td>
</tr>
<tr>
<td>Figure 3.5 RAMP Function</td>
<td>. 15</td>
</tr>
<tr>
<td>Figure 3.6 Dwell Timer Function</td>
<td>. 15</td>
</tr>
<tr>
<td>Figure 3.7 PV Shift Application</td>
<td>. 16</td>
</tr>
<tr>
<td>Figure 3.8 Filter Characteristics</td>
<td>. 16</td>
</tr>
<tr>
<td>Figure 3.9 Effects of PID Adjustment</td>
<td>. 17</td>
</tr>
<tr>
<td>Figure 4.1 Heating Control Example</td>
<td>. 19</td>
</tr>
<tr>
<td>Figure 4.2 Cooling Control Example</td>
<td>. 19</td>
</tr>
<tr>
<td>Figure 4.3 Heat-Cool Control Example</td>
<td>. 20</td>
</tr>
</tbody>
</table>

Table 1.1 Display Form of Characters 3
Table 3.1 Heat-Cool Control Setup Value 12
Table 3.2 PID Adjustment Guide 17
Table A.1 Error Codes and Corrective Actions 28
1–1 General
Tempco’s TEC-x100 Series Fuzzy Logic plus PID microprocessor-based controllers incorporate two bright easy to read 4-digit LED displays, indicating process value and set point value. The process value (PV) display is always the top digital display. The setpoint (SV) display is always the bottom display. Fuzzy Logic technology enables a process to reach a predetermined set point in the shortest time with a minimum of overshoot during power-up or external load disturbance.

TEC-9100 is a 1/16 DIN size panel mount controller. TEC-7100 is a 72×72 DIN size panel mount controller. TEC-8100 is a 1/8 DIN size panel mount controller and TEC-4100 is a 1/4 DIN size panel mount controller. These units are powered by 11–26 or 90–250 VDC/VAC 50/60 Hz supply, incorporating a 2 amp control relay output as standard. The second output can be used as a cooling control or an alarm. Both outputs can select triac, 5V logic output, linear current, or linear voltage to drive an external device. There are six types of alarm plus a dwell timer that can be configured for the third output. The units are fully programmable for PT100 RTD and thermocouple types J, K, T, E, B, R, S, N, and L with no need to modify the unit. The input signal is digitized by using an 18-bit A to D converter. Its fast sampling rate allows the unit to control fast processes.

Digital communications RS-485 or RS-232 (excluding TEC-7100) are available as an additional option. These options allow the units to be integrated with supervisory control systems and software.

A programming port is available for automatic configuration, calibration, and testing without the need to access the keys on the front panel.

By using proprietary Fuzzy modified PID technology, the control loop will minimize overshoot and undershoot in a short time. The following diagram is a comparison of results with and without Fuzzy technology.

![Fuzzy Control Advantage](image)

High accuracy
This series is manufactured with custom designed ASIC (Application Specific Integrated Circuit) technology which contains an 18-bit A to D converter for high resolution measurement (true 0.1°F resolution for thermocouple and PT100) and a 15-bit D to A converter for linear current or voltage control output. The ASIC technology provides improved operating performance, low cost, enhanced reliability and higher density.

Fast sampling rate
The sampling rate of the input A to D converter is 5 times/second. The fast sampling rate allows this series to control fast processes.

Fuzzy control
The function of Fuzzy control is to adjust PID parameters from time to time in order to make manipulation of the output value more flexible and adaptive to various processes. The result is to enable a process to reach a predetermined set point in the shortest time, with the minimum of overshoot and undershoot during power-up or external load disturbance.

Digital communication
The units are equipped with an optional RS-485 or RS-232 interface cards to provide digital communication. By using twisted pair wires, up to 247 units can be connected together via RS-485 interface to a host computer.

Programming port
A programming port can be used to connect the unit to a PC for quick configuration. It also can be connected to an ATE system for automatic testing and calibration.

Auto-tune
The auto-tune function allows the user to simplify initial setup for a new system. An advanced algorithm is used to obtain an optimal set of control parameters for the process, and it can be applied either as the process is warming up (cold start) or when the process is in a steady state (warm start).

Lockout protection
Depending on security requirements, one of four lockout levels can be selected to prevent the unit from being changed without permission.

Bumpless transfer
Bumpless transfer allows the controller to continue to control if the sensor breaks by using its previous value. Hence, the process can be controlled temporarily as if the sensor is normal.

Soft-start ramp
The ramping function is performed during power up as well as any time the set point is changed. It can be ramping up or ramping down. The process value will reach the set point at a predetermined constant rate.

Digital filter
A first order low pass filter with a programmable time constant is used to improve the stability of the process value. This is particularly useful in certain applications where the process value is too unstable to be read.

SEL function
The units have the flexibility to allow the user to select those parameters which are most significant to him and put these parameters in the front of the display sequence. Up to eight parameters can be selected to allow the user to build his own display sequence.
Data Communication Accessories:

TEC99001 Smart Network Adapter for third party SCADA software which converts 255 channels of RS-485 or RS-422 to RS-232 Network.

TEC99003 Smart Network Adapter for connecting the programming port to the RS-232 PC serial port. Allows downloading and reading of configuration information directly from a personal computer. Can be used with TEC-4100, TEC-7100, TEC-8100 and TEC-9100.

Power Input
- 4 = 90-250 V AC
- 5 = 11-26 VAC/VDC
- 9 = Other

Signal Input
- Universal, can be programmed in the field for item 5 or 6
- 5 = TC: *J,K,T,E,B,R,S,N,L 0-60 mV
- 6 = RTD: *PT100 DIN, PT100 JIS
- 7 = 0-1 VDC
- 8 = *0-5, 1-5 VDC
- A = 0-10 VDC
- B = *4-20, 0-20 mA
- 9 = Other
*indicates default value

Output 1
- 1 = Relay: 2A/240 VAC
- 2 = Pulse dc for SSR drive: 5 Vdc (30 mA max)
- 3 = Isolated, 4-20 mA (default) 0-20 mA
- 4 = Isolated, VDC, 1-5 (default) 0-5, 0-1
- 5 = Isolated, VDC, 0-10
- 6 = Triac-SSR output 1A/240 VAC
- C = Pulse dc for SSR drive: 14 Vdc (40 mA max)
- 9 = Other

Output 2
- 0 = None
- 1 = Relay: 2A/240 VAC
- 2 = Pulse dc for SSR drive: 5 Vdc (30 mA max)
- 3 = Isolated, 4-20 mA (default), 0-20 mA
- 4 = Isolated VDC, 1-5 (default), 0-5, 0-1
- 5 = Isolated VDC, 0-10
- 6 = Triac-SSR output 1A /240 VAC
- 7 = Isolated 20V @ 25 mA DC, Output Power Supply
- 8 = Isolated 12V @ 40 mA DC, Output Power Supply
- 9 = Isolated 5V @ 80 mA DC, Output Power Supply
- C = Pulse dc for SSR drive: 14 VDC (40 mA max)
- A = Other

Alarm
- 0 = None
- 1 = Relay: 2A/240 VAC, SPDT
- 9 = Other

Communication
- 0 = None
- 1 = RS-485 Interface
- 2 = RS-232 Interface
- 3 = Retransmission 4-20 mA (default), 0-20 mA
- 4 = Retransmission 1-5 Vdc (default), 0-5 VDC
- 5 = Retransmission 0-10 VDC

NEMA 4X/IP65
- 0 = No
- 1 = Yes

TEC99030 "Tempco Config Set" PC software for use with TEC99003 Smart Network Adapter. *(can be downloaded at no charge from www.tempco.com)*

- Minimum System Requirements:
 - Microsoft Windows 2000, 98, 95, NT4.0
 - Pentium 200 MHz or faster
 - 32 MB RAM (64 MB recommended)
 - Hard disk space: 2 MB

TEC99011 Programming port cable for TEC-4100, TEC-7100, TEC-8100 and TEC-9100. Connects the controller to the TEC99003 Smart Network Adapter.
1–3 Programming Port

The TEC99011 cable and TEC99003 network adapter can be used to connect the programming port to a PC for automatic configuration.

The programming port is used for off-line automatic setup and testing procedures only. Don’t attempt to make any connection to these pins when the unit is used for a normal control purpose.

1–4 Keys and Displays

KEYPAD OPERATION

SCROLL KEY:
This key is used to select a parameter to be viewed or adjusted.

UP KEY:
This key is used to increase the value of the selected parameter.

DOWN KEY:
This key is used to decrease the value of the selected parameter.

RESET KEY:
This key is used to:
1. Revert the display to show the process value.
2. Reset the latching alarm, once the alarm condition is removed.
3. Stop the manual control mode, auto-tuning mode, and calibration mode.
4. Clear the message of communication error and auto-tuning error.
5. Restart the dwell timer when the dwell timer has timed out.
6. Enter the manual control menu when in failure mode.

ENTER KEY: Press for 5 seconds or longer.
Press for 5 seconds to:
1. Enter setup menu. The display shows .
2. Enter manual control mode—when manual control mode \(\text{MAN} \) is selected.
3. Enter auto-tuning mode—when auto-tuning mode \(\text{AUT} \) is selected.
4. Perform calibration to a selected parameter during the calibration procedure.
 Press for 6.2 seconds to select manual control mode.
 Press for 7.4 seconds to select auto-tuning mode.
 Press for 8.6 seconds to select calibration mode.

R

1. Display program code of the product for 2.5 seconds.
2. Display program number 6 for TEC-9100 with version 12.
3. The program no. for TEC-7100 is 13, for TEC-8100 is 11 and for TEC-4100 is 12.
1–5 Menu Overview

Entering these modes will break the control loop and change some of the previously set data. Make sure that the system is able to accept these modes.

1: This flow chart shows a complete listing of all parameters. For actual application the number of available parameters depends on setup conditions and could be less than that shown in the flow chart.

2: You can select up to 8 parameters to be placed in the user menu by using SEL1–SEL8 located at the bottom of setup menu.

3: Release ☐, press ☐ again for at least 2 but no more than 3 seconds, then release to access the calibration menu.

The user menu shown in the flow chart corresponds to the default setting for SELECT parameters SEL1 to SEL8. SP3 will be hidden if NONE is selected for ALFN. SP2 will be hidden if the alarm function is not selected for OUT2. An unused parameter will be hidden even if it selected by the SEL parameters.
1–6 Parameter Descriptions

<table>
<thead>
<tr>
<th>Parameter Notation</th>
<th>Parameter Description (Refer to Page)</th>
<th>Range</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Set point for output 1</td>
<td>Low: SP1L High: SP1H</td>
<td>77.0°F (25.0°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Set point for output 2 when output 2 performs alarm function</td>
<td>Low: -19999 High: 45536</td>
<td>18.0°F (10.0°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Set point for alarm or dwell timer output</td>
<td>Low: -19999 High: 45536</td>
<td>18.0°F (10.0°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Select parameters to be locked out (Page 12)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Input sensor selection (Page 12 & 21)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Input unit selection</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Decimal point selection</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Input low scale value (Page 12)</td>
<td>Low: -19999 High: 45536</td>
<td>0°F (-17.8°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Input high scale value (Page 12)</td>
<td>Low: INLO+50 High: 45536</td>
<td>1000°F (538°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Limit of set point (Page 12)</td>
<td>Low: -19999 High: 45536</td>
<td>0°F (-17.8°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>High limit of set point (Page 12)</td>
<td>Low: SP1L High: 45536</td>
<td>1000°F (538°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>PV shift (offset) value (Page 16)</td>
<td>Low: -360.0°F (-200.0°C) High: 360.0°F (200.0°C)</td>
<td>0.0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Filter damping time constant of PV (Page 16)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Parameter Notation</td>
<td>Parameter Description (Refer to Page)</td>
<td>Range</td>
<td>Default Value</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>Pb PB</td>
<td>Proportional band value (Page 17)</td>
<td>Low: 0 High: 900.0°F (500.0°C) 18.0°F (10.0°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>I1 TD</td>
<td>Integral time value</td>
<td>Low: 0 High: 1000 sec 100</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>D1 TD</td>
<td>Derivative time value</td>
<td>Low: 0 High: 360.0 sec 25.0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT1 OUT1</td>
<td>Output 1 function</td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT1 OUT1</td>
<td>Output 1 signal type (Page 21)</td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT1 OUT1</td>
<td>Output 1 failure transfer mode (Page 16)</td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT1 OUT1</td>
<td>Output 1 ON-OFF hysteresis (Page 13)</td>
<td>Low: 0.1 High: 90.0°F (50.0°C) 0.2°F (0.1°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT1 OUT1</td>
<td>Output 1 cycle time</td>
<td>Low: 0.1 High: 90.0 sec. 18.0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT1 OUT1</td>
<td>Offset value for P control</td>
<td>Low: 0 High: 100.0% 25.0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>RAMP RAMP</td>
<td>Ramp function selection (Page 15)</td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT2 OUT2</td>
<td>Output 2 function (Page 14 & 20)</td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT2 OUT2</td>
<td>Output 2 signal type (Page 21)</td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT2 OUT2</td>
<td>Output 2 failure transfer mode (Page 16)</td>
<td>0</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>OUT2 OUT2</td>
<td>Output 2 hysteresis value when output 2 performs alarm function</td>
<td>Low: 0.1 High: 90.0°F (50.0°C) 0.2°F (0.1°C)</td>
</tr>
<tr>
<td>1–6 Parameter Descriptions</td>
<td>CPB CPB</td>
<td>Cooling proportional band value (Page 13)</td>
<td>Low: 50 High: 300% 100</td>
</tr>
</tbody>
</table>

Continued...
<table>
<thead>
<tr>
<th>Parameter Notation</th>
<th>Parameter Description (Refer to Page)</th>
<th>Range</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>db DB</td>
<td>Heating-cooling deadband (negative value=overlap)</td>
<td>Low: -36.0 High: 36.0%</td>
<td>0</td>
</tr>
<tr>
<td>RLFn ALFN</td>
<td>Alarm function for alarm output (Page 14 & 15)</td>
<td>0 1) non-E: No alarm function 2) D.EH : Deviation high alarm 3) D.EL : Deviation low alarm 4) D.BH : Deviation band out of band alarm 5) D.BL : Deviation band in band alarm 6) P.H : Process value high alarm 7) P.L : Process value low alarm</td>
<td>2</td>
</tr>
<tr>
<td>RLAD ALMD</td>
<td>Alarm operation mode (Page 14)</td>
<td>0 1) nor : Normal alarm action 2) Latch : Latching alarm action 3) Hold : Hold alarm action 4) Latch & Hold : Latching & Hold action</td>
<td>0</td>
</tr>
<tr>
<td>RLH9 ALHY</td>
<td>Hysteresis control of alarm</td>
<td>Low: 0.1 High: 90.0°F (50.0°C) 0.2°F (0.1°C)</td>
<td></td>
</tr>
<tr>
<td>RLFT ALFT</td>
<td>Alarm failure transfer mode</td>
<td>0 1) on : Alarm output ON as unit fails 2) off : Alarm output OFF as unit fails</td>
<td>0</td>
</tr>
<tr>
<td>Comm</td>
<td>Communication function (Page 18 & 23)</td>
<td>0 1) none : No communication 2) rB : Modbus RTU mode protocol 3) 4-20 : 4 - 20 mA retransmission output 4) 0-20 : 0 - 20 mA retransmission output 5) 0-5V : 0 - 5 V retransmission output 6) 1-5V : 1 - 5 V retransmission output 7) 0-10V : 0 - 10 V retransmission output</td>
<td>0</td>
</tr>
<tr>
<td>Addr ADDR</td>
<td>Address assignment for digital communication</td>
<td>Low: 1 High: 255</td>
<td></td>
</tr>
<tr>
<td>BAUD</td>
<td>Baud rate of digital communication (Page 23)</td>
<td>0 1) 24 : 2.4 Kbits/s baud rate 2) 96 : 9.6 Kbits/s baud rate 3) 144 : 14.4 Kbits/s baud rate 4) 192 : 19.2 Kbits/s baud rate 5) 288 : 28.8 Kbits/s baud rate 6) 384 : 38.4 Kbits/s baud rate</td>
<td>2</td>
</tr>
</tbody>
</table>

Parameter Descriptions, Continued...

<table>
<thead>
<tr>
<th>Parameter Notation</th>
<th>Parameter Description (Refer to Page)</th>
<th>Range</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data bit count of digital communication</td>
<td>0 1) 7b, E : 7 data bits 1) 8b, E : 8 data bits</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Parity bit of digital communication</td>
<td>0 1) even : Even parity 2) odd : Odd parity 3) none : No parity bit</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stop bit count of digital communication</td>
<td>0 1) 1b, E : One stop bit 2) 2b, E : Two stop bits</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Retransmission low scale value (Page 18)</td>
<td>Low: -19999 High: 45536</td>
<td>0°F (-17.8°C)</td>
<td></td>
</tr>
<tr>
<td>Retransmission high scale value (Page 18)</td>
<td>Low: -19999 High: 45536</td>
<td>1000°F (538°C)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEL1 SEL2 SEL3 SEL4 SEL5 SEL6 SEL7 SEL8</th>
<th>Select the 1st parameter for user menu (Page 4)</th>
<th>Select 1st parameter for user menu</th>
<th>Select 2nd parameter for user menu</th>
<th>Select 3rd parameter for user menu</th>
<th>Select 4th parameter for user menu</th>
<th>Select 5th parameter for user menu</th>
<th>Select 6th parameter for user menu</th>
<th>Select 7th parameter for user menu</th>
<th>Select 8th parameter for user menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1) none : No parameter selected 2) Lock : LOCK is put ahead 3) nP : INPT is put ahead 4) uN : UNIT is put ahead 5) dP : DP is put ahead 6) SHF : SHIF is put ahead 7) PB : PB is put ahead 8) TI : TI is put ahead 9) Td : TD is put ahead 10) 0HY : O1HY is put ahead 11) 0CY : CYC1 is put ahead 12) rC : RR is put ahead 13) 0HY : O2HY is put ahead 14) 0CY : CYC2 is put ahead 15) CBP : CBP is put ahead 16) DB : DB is put ahead 17) ADDR : ADDR is put ahead 18) ALHY : ALHY is put ahead</td>
<td>0 1) none : No parameter selected 2) Lock : LOCK is put ahead 3) nP : INPT is put ahead 4) uN : UNIT is put ahead 5) dP : DP is put ahead 6) SHF : SHIF is put ahead 7) PB : PB is put ahead 8) TI : TI is put ahead 9) Td : TD is put ahead 10) 0HY : O1HY is put ahead 11) 0CY : CYC1 is put ahead 12) rC : RR is put ahead 13) 0HY : O2HY is put ahead 14) 0CY : CYC2 is put ahead 15) CBP : CBP is put ahead 16) DB : DB is put ahead 17) ADDR : ADDR is put ahead 18) ALHY : ALHY is put ahead</td>
<td>Same as SEL1</td>
</tr>
</tbody>
</table>
Chapter 2 Installation

Dangerous voltages capable of causing death are sometimes present in this instrument. Before installation or beginning any troubleshooting procedures, the power to all equipment must be switched off and isolated. Units suspected of being faulty must be disconnected and removed to a properly equipped workshop for testing and repair. Component replacement and internal adjustments must be made by a qualified maintenance person only.

This instrument is protected throughout by double insulation to minimize the possibility of fire or shock hazards, do not expose this instrument to rain or excessive moisture.

Do not use this instrument in areas under hazardous conditions such as excessive shock, vibration, dirt, moisture, corrosive gases or oil. This control is not to be used in hazardous locations as defined in Articles 500 and 505 of the National Electrical Code. The ambient temperature of the area should not exceed 122°F.

Remove stains from this instrument using a soft, dry cloth. To avoid deformation or discoloration do not use harsh chemicals, volatile solvent such as thinner, or strong detergents to clean this instrument.

2–1 Unpacking
Upon receipt of the shipment, remove the unit from the carton and inspect the unit for shipping damage.

If there is any damage due to transit, report it and file a claim with the carrier. Write down the model number, serial number, and date code for future reference when corresponding with Tempco. The serial number (S/N) and date code (D/C) are labeled on the box and the housing of the control.

2–2 Mounting
Remove mounting clamps or screws and insert the controller into the panel cutout. Reinstall the mounting clamps or screws. Gently tighten the screws or clamp until the front panel of the controller fits snugly in the cutout.

Figure 2.1 Mounting Dimensions

NOTE:
The TEC-9100 Series will be supplied with mounting clamps (2).
In clamp mounting, to remove the clamps before installation lift under one of the edges and pull up (un-peel). To install just snap back on and push the clamps towards the front of the control until they are snug.
2–3 Wiring Precautions

• Before wiring, verify the correct model number and options on the label. Switch off the power while checking.
• Care must be taken to ensure that the maximum voltage rating specified on the label is not exceeded.
• It is recommended that the power for these units be protected by fuses or circuit breakers rated at the minimum value possible.
• All units should be installed in a suitable enclosure to prevent live parts from being accessible to human hands and metal tools. Metal enclosures and/or subpanels should be grounded in accordance with national and local codes.
• All wiring must conform to appropriate standards of good practice and local codes and regulations. Wiring must be suitable for the voltage, current, and temperature rating of the system.
• Beware not to over-tighten the terminal screws. The torque should not exceed 1 N-m (8.9 lb-in or 10 KgF-cm).
• Unused control terminals should not be used as jumper points as they may be internally connected, causing damage to the unit.
• Verify that the ratings of the output devices and the inputs as specified are not exceeded.
• Except for thermocouple wiring, all wiring should use stranded copper conductor with a maximum gage of 14 AWG.
• Electrical power in industrial environments contains a certain amount of noise in the form of transient voltage and spikes. This electrical noise can adversely affect the operation of microprocessor-based controls. For this reason the use of shielded thermocouple extension wire which connects the sensor to the controller is strongly recommended. This wire is a twisted-pair construction with foil wrap and drain wire. The drain wire is to be attached to ground in the control panel only.

*Or low voltage (11-26 VAC/VDC) when ordered as specified. Non-polarized.
Proper sensor installation can eliminate many problems in a control system. The probe should be placed so that it can detect any temperature change with minimal thermal lag. In a process that requires fairly constant heat output, the probe should be placed close to the heater. In a process where the heat demand is variable, the probe should be close to the work area. Some experimentation with probe location is often required to find the optimum position.

In a liquid process, the addition of agitation will help to eliminate thermal lag. Since the thermocouple is basically a point measuring device, placing more than one thermocouple in parallel can provide an average temperature readout and produce better results in most air heated processes.

Proper sensor type is also a very important factor in obtaining precise measurements. The sensor must have the correct temperature range to meet the process requirements. In special processes, the sensor might have requirements such as leak-proof, anti-vibration, antiseptic, etc.

Standard sensor limits of error are ±4°F (±2°C) or 0.75% of the sensed temperature (half that for special) plus drift caused by improper protection or an over-temperature occurrence. This error is far greater than controller error and cannot be corrected on the sensor except by proper selection and replacement.

Note: A 2-wire RTD temperature sensor can be used if a short is placed across the “B” terminals.

Example: For a TEC-9100 Controller, connect the 2-wire RTD to terminals 4 & 5, and a short across terminals 5 & 6.

This equipment is designed for installation in an enclosure which provides adequate protection against electric shock. The enclosure must be connected to earth ground.

Local requirements regarding electrical installation should be rigidly observed. Consideration should be given to prevent unauthorized personnel from accessing the power terminals.
Control Output Wiring, continued…

Figure 2.10 Output 1 Relay or Triac (SSR) to Drive Contactor

Figure 2.11 Output 1 Pulsed Voltage to Drive SSR

Figure 2.12 Output 1 Linear Current

Figure 2.13 Output 1 Linear Voltage

Figure 2.14 Output 2 or Triac (SSR) to Drive Load

Figure 2.15 Output 2 Relay or Triac (SSR) to Drive Contactor

Figure 2.16 Output 2 Pulsed Voltage to Drive SSR

Figure 2.17 Output 2 Linear Current

Figure 2.18 Output 2 Linear Voltage
2–8 Alarm Wiring

If you use a conventional 9-pin RS-232 cable instead of TEC 99014, the cable must be modified according to the following circuit diagram.

Figure 2.19 Alarm Output to Drive Load

Figure 2.20 Alarm Output to Drive Contactor

Figure 2.20.1 Dwell Timer Function

2–9 Data Communication

If you use a conventional 9-pin RS-232 cable instead of TEC 99014, the cable must be modified according to the following circuit diagram.

Figure 2.21 RS-485 Wiring

Max. 247 units can be linked

Terminator Resistor 220 ohms / 0.5W

Figure 2.22 RS-232 Wiring

Figure 2.23 Configuration of RS-232 Cable
Chapter 3 Programming

Press for 5 seconds and release to enter the setup menu. Press to select the desired parameter. The upper display indicates the parameter symbol, and the lower display indicates the selected value of the parameter.

3–1 Lockout
There are four security levels that can be selected using the LOCK parameter.
If NONE is selected for LOCK, then no parameter is locked.
If SET is selected for LOCK, then all setup data are locked.
If USER is selected for LOCK, then all setup data as well as user data (refer to section 1-5) except the set point are locked to prevent them from being changed.
If ALL is selected for LOCK, then all parameters are locked to prevent them from being changed.

3–2 Signal Input
INPT: Selects the sensor type or signal type for signal input.
Range: (thermocouple) J-TC, K-TC, T-TC, E-TC, B-TC, R-TC, S-TC, L-TC
(RTD) PT.DN, PT.JS
(Linear) 4–20mA, 0–20mA, 0–60mV, 0–1VDC, 0–5VDC, 1–5VDC, 0–10VDC
UNIT: Selects the process unit
Range: °C, °F, PU (process unit). If the unit is set for neither °C nor °F, then it defaults to PU.
DP: Selects the resolution of process value.
Range: (For T/C and RTD) NO.DP, 1-DP
(For linear) NO.DP, 1-DP, 2-DP, 3-DP
INLO: Selects the low scale value for the linear type input.
INHI: Selects the high scale value for the linear type input.
How to use the conversion curve for linear type process values, INLO and INHI:
If 4–20mA is selected for INPT, SL specifies the input signal low (i.e., 4mA), SH specifies the input signal high (i.e., 20mA), S specifies the current input signal value, and the conversion curve of the process value is shown as follows:

\[
\text{PV} = \frac{\text{INLO} + (\text{INHI} - \text{INLO}) \times S}{\text{INLO}} \times (\frac{\text{SH} - \text{SL}}{\text{INHI} - \text{INLO}})
\]
Example: A 4–20 mA current loop pressure transducer with range 0–15 kg/cm² is connected to input, then perform the following setup:
INPT = 4–20 INLO = 0.00
INHI = 15.00 DP = 2-DP
Of course, you may select other value for DP to alter the resolution.
SL = Setpoint Low Limit SH = Setpoint High Limit

3–3 Control Outputs
There are four kinds of control modes that can be configured as shown in table 3.1.

<table>
<thead>
<tr>
<th>Control Modes</th>
<th>OUT1</th>
<th>OUT2</th>
<th>O1HY</th>
<th>O2HY</th>
<th>CPB</th>
<th>DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat only</td>
<td>REVR</td>
<td>✗</td>
<td>✡</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Cool only</td>
<td>DIRT</td>
<td>✗</td>
<td>✡</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Heat: PID</td>
<td>REVR</td>
<td>❌</td>
<td>O</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Cool: ON-OFF</td>
<td>REVR</td>
<td>❌</td>
<td>O</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Heat: PID</td>
<td>REVR</td>
<td>COOL</td>
<td>✗</td>
<td>❌</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Cool: PID</td>
<td>REVR</td>
<td>COOL</td>
<td>✗</td>
<td>❌</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

✗: Does not apply
_round: Adjust to meet process requirements
✡: Required if ON-OFF control is configured

Table 3.1 Heat-Cool Control Setup Value

OUT1:
Output 1 Type
OUT2:
Output 2 Type
O1HY:
Output 1 Hysteresis
O2HY:
Output 2 Hysteresis
CPB:
Cooling Proportional Band
DB:
Heating Cooling Dead Band
Control Outputs, continued…

Heat only ON-OFF control: Select REVR for OUT1. Set PB (proportional band) to 0. O1HY is used to adjust dead band for ON-OFF control. The output 1 hysteresis (O1HY) is enabled in case PB=0. The heat only on-off control function is shown in the following diagram:

![Figure 3.2 Heat Only ON-OFF Control](image)

The ON-OFF control may introduce excessive process oscillation even if hysteresis is minimized. If ON-OFF control is set (i.e., PB=0), TI, TD, CYC1, OFST, CYC2, CPB, and DB will be hidden and have no function in the system. The auto-tuning and bumpless transfer functions will be disabled as well.

Heat only P (or PD) control: Select REVR for OUT1, set TI to 0. OFST is used to adjust the control offset (manual reset). O1HY is hidden if PB is not equal to 0.

OFST function: OFST is measured in % with a range of 0–100.0%.

In a steady state (i.e., process has stabilized at a temperature), if the process value is lower than the set point by a constant value (we’ll say 5°C) while the PB setting is set for 20°C, we can say the temperature is lower than the setpoint by 25% of the PB setting. This can be corrected by increasing the OFST setting to 25%. After adjusting the OFST value, the process value will eventually coincide with set point.

Note that using the P control (TI set to 0), disables auto-tuning. Refer to Section 3-12 “manual tuning” for the adjustment of P and PD. Manual reset (adjust OFST) is sometimes not practical since the load may change from time to time and OFST may need to be adjusted repeatedly. PID control can avoid this situation.

Heat only PID control: If REVR is selected for OUT1, PB and TI should not be zero. Perform auto-tuning for the new process, or set PB, TI, and TD with historical values. See section 3-11 for auto-tuning operation. If the control result is still unsatisfactory, then use manual tuning to improve control. See section 3-12 for manual tuning. The unit contains a very advanced PID and Fuzzy Logic algorithm to create a very small overshoot and very quick response to the process if it is properly tuned.

Cool only control: ON-OFF control, P (PD) control, and PID control can be used for cool control. Set OUT1 to DIRT (direct action). The other functions for cool only ON-OFF control, cool only P (PD) control, and cool only PID control are the same as for heat only control except that the output variable (and action) for cool control is inverse to heat control.

NOTE: ON-OFF control may result in excessive overshoot and undershoot problems in the process. P (or PD) control will result in a deviation of process value from the set point. It is recommended to use PID control for heat-cool control to produce a stable and zero offset process value.

Other setup required: O1TY, CYC1, O2TY, CYC2, O1FT and O2FT are set in accordance with the types of OUT1 and OUT2 installed. CYC1 and CYC2 are selected according to the output 1 type (O1TY) and output 2 type (O2TY). Generally, select 0.5–2 seconds for CYC1 if SSRD or SSR is used for O1TY; 10–20 seconds if relay is used for O1TY. CYC1 is ignored if a linear output is used. Similar conditions are applied for CYC2 selection.

You can use the auto-tuning program for the new process or directly set the appropriate values for PB, TI, and TD according to historical records for the repeated systems. If the control behavior is still inadequate, use manual tuning to improve the control. See section 3-12 for manual tuning.

CPB (Cooling Proportional Band) Programming: The cooling proportional band is measured by % of PB with a range of 50-300. Initially set 100% for CPB and examine the cooling effect. If the cooling action should be enhanced, then decrease CPB, if the cooling action is too strong, then increase CPB. The value of CPB is related to PB and its value remains unchanged throughout the auto-tuning procedures.

Adjustment of CPB is related to the cooling medium used. If air is used as the cooling medium, adjust CPB to 100%. If oil is used as the cooling medium, adjust CPB to 125%. If water is used as the cooling medium, adjust CPB to 250%.

DB (Heating-Cooling Dead Band) Programming: The adjustment of DB is dependent on the system requirements. If a more positive value of DB (greater dead band) is used, an unwanted cooling action can be avoided but an excessive overshoot over the set point will occur. If a more negative value of DB (greater overlap) is used, an excessive overshoot over the set point can be minimized, but an unwanted cooling action will occur. It is adjustable in the range -36.0% to 36.0% of PB. A more positive value of DB (greater dead band) is used, an unwanted cooling action can be avoided but an excessive cooling proportional band is measured by % of PB with a range of 50-300. Initially set 100% for CPB and examine the cooling effect. If the cooling action should be enhanced, then decrease CPB, if the cooling action is too strong, then increase CPB. The value of CPB is related to PB and its value remains unchanged throughout the auto-tuning procedures.

Adjustment of CPB is related to the cooling medium used. If air is used as the cooling medium, adjust CPB to 100%. If oil is used as the cooling medium, adjust CPB to 125%. If water is used as the cooling medium, adjust CPB to 250%.

Output 2 ON-OFF control (alarm function): Output 2 can also be configured with an alarm function. There are four kinds of alarm functions that can be selected for output 2. These are: DE.HI (deviation high alarm), DE.LO (deviation low alarm), PV.HI (process high alarm), and PV.LO (process low alarm). Refer to figure 3.3 and figure 3.4 for descriptions of the deviation alarm and the process alarm.

3.3 & 3.4 Alarm Figures, next page…
The controller has one alarm output. There are six types of alarm functions and one dwell timer that can be selected, and four kinds of alarm modes (ALMD) are available for each alarm function (ALFN). Output 2 can be configured as another alarm in addition to the alarm output. But output 2 only provides four kinds of alarm functions and only normal alarm mode is available for this alarm. When output 2 is used as an alarm, SP2 sets the trigger point. SP3 sets the trigger point for Alarm.

A **process alarm** sets absolute trigger levels. When the process is higher than SP3, a process high alarm (PV.HI) occurs, and the alarm is off when the process is lower than SP3-ALHY. When the process is lower than SP3, a process low alarm (PV.LO) occurs, and the alarm is off when the process is higher than SP3+ALHY. A process alarm is independent of the set point.

A **deviation alarm** alerts the user when the process deviates from the set point. When the process is higher than SV+SP3, a deviation high alarm (DE.HI) occurs, and the alarm is off when the process is lower than SV+SP3-ALHY. When the process is lower than SV+SP3, a deviation low alarm (DE.LO) occurs, and the alarm is off when the process is higher than SV+SP3+ALHY. The trigger level of the deviation alarm moves with the set point.

A **deviation band alarm** presets two trigger levels relative to the set point. The two trigger levels are SV+SP3 and SV-SP3 for alarm. When the process is higher than (SV+SP3) or lower than (SV-SP3), a deviation band high alarm (DB.HI) occurs. When the process is within the trigger levels, a deviation band low alarm (DB.LO) occurs.

There are four types of alarm modes available for each alarm function. These are: normal alarm, latching alarm, holding alarm and latching/holding alarm. They are described as follows:

- **Normal alarm: ALMD=NORM**
 When a normal alarm is selected, the alarm output is de-energized in the non-alarm condition and energized in an alarm condition.

- **Latching alarm: ALMD=LTCH**
 If a latching alarm is selected, once the alarm output is energized, it will remain unchanged even if the alarm condition is cleared. The latching alarm is reset when the RESET key is pressed after the alarm condition is removed.

- **Holding alarm: ALMD=HOLD**
 A holding alarm prevents an alarm when the control is powering up. The alarm is enabled only when the process reaches the set point value. Afterwards, the alarm performs the same function as a normal alarm.

- **Latching/holding alarm: ALMD=LT.HO**
 A latching/holding alarm performs both holding and latching functions. The latching alarm is reset when the RESET key is pressed after the alarm condition is removed.

Alarm failure transfer is activated as the unit enters failure mode. The alarm will go on if ALFT is set for ON and go off if ALFT is set for OFF. The unit will enter failure mode when a sensor break occurs or if the A-D converter of the unit fails.
3–5 Configuring User Menu

Most conventional controllers are designed with a fixed order in which the parameters scroll. The x100 series have the flexibility to allow you to select those parameters which are most significant to you and put these parameters at the front of the display sequence.

SEL1–SEL8: Selects the parameter for view and change in the user menu.

Range: LOCK, INPT, UNIT, DP, SHIF, PB, TI, TD, O1HY, CYC1, OFST, RR, O2HY, CYC2, CPB, DB, ADDR, ALHY

When using the up and down keys to select the parameters, you may not see all of the above parameters. The number of visible parameters is dependent on the setup condition. The hidden parameters for the specific application are also blocked from the SEL selection.

Example:

OUT2 set for DE.LO PB= 100.0 SEL1 set for INPT
SEL2 set for UNIT SEL3 set for PB SEL4 set for TI
SEL5–SEL8 set for NONE

Now, the upper display scrolling becomes:

3–6 Ramp

Ramp

The ramping function is performed during power up as well as any time the set point is changed. If MINR or HRR is chosen for RAMP, the unit will perform the ramping function. The ramp rate is programmed by adjusting RR. The ramping function is disabled as soon as failure mode, manual control mode, auto-tuning mode or calibration mode is entered.

Example without dwell timer

Select MINR for RAMP, select ° for UNIT, select 1-DP for DP, set RR=10.0. SV is set to 200°C initially, and changed to 100°C 30 minutes after power-up. The starting temperature is 30°C. After power-up, the process runs like the curve shown below:

170°C in 17 min.

3–7 Dwell Timer

The alarm output can be configured as a dwell timer by selecting TIMR for ALFN (alarm function). As the dwell timer is configured, the parameter SP3 is used for dwell time adjustment. The dwell time is measured in minutes ranging from 0.1 to 4553 minutes. Once the process reaches the set point the dwell timer starts to count down to zero (time out). The timer relay will remain unchanged until time out. For the dwell timer to control the heater, the heater circuit (or contactor) must be wired in series with the alarm relay. Note the following diagram located below and also Figure 2.20.1 on page 11. When the dwell timer times out, the heater will be turned off. The dwell timer operation is shown in the following diagram.

After time out, the dwell timer can be restarted by pressing the RESET key.

The timer stops counting during manual control mode, failure mode, the calibration period and the auto-tuning period.

If the alarm is configured as a dwell timer, ALHY and ALMD are hidden.

Note: When the ramp function is used, the lower display will show the current ramping value. The ramping value is an artificially determined setpoint created and updated by the control to match the ramp rate set by the user. However, it will revert to show the set point value as soon as the up or down key is touched for adjustment. The ramping value is initiated to process value either on power-up or when RR and/or the set point are changed. Setting RR to zero means no ramp function.
3–8 PV Shift

In certain applications it is desirable to shift the controller display value (PV) from its actual value. This can easily be accomplished by using the PV shift function.

The SHIF function will alter PV only.

Example: A process is equipped with a heater, a sensor, and a subject to be warmed up. Due to the design and position of the components in the system, the sensor could not be placed any closer to the part. Thermal gradient (differing temperatures) is common and necessary to an extent in any thermal system for heat to be transferred from one point to another. If the difference between the sensor and the subject is 35°C, and the desired temperature at the subject to be heated is 200°C, the temperature at the sensor should be 235°C. You should enter -35°C to subtract 35°C from the actual process display. This in turn will cause the controller to energize the load and bring the process display up to the set point value.

3–9 Digital Filter

In certain applications, the process value is too unstable to be read due possibly to electrical noise. A programmable low-pass filter incorporated in the controller is used to improve this. It is a first-order filter with the time constant specified by the FILT parameter. The default value of FILT is set at 0.5 seconds before shipping. Adjust FILT to change the time constant from 0 to 60 seconds. 0 seconds means no filter is applied to the input signal. The filter is characterized by the diagram in Figure 3.8.

Note:
The filter is available only for PV, and is performed for the displayed value only. The controller is designed to use unfiltered signal for control even if the filter is applied. A lagged (filtered) signal, if used for control, may produce an unstable process.

3–10 Failure Transfer

The controller will enter failure mode if one of the following conditions occurs:

1. SBER occurs due to input sensor break or input current below 1mA if 4–20 mA is selected or input voltage below 0.25V if 1–5V is selected.
2. ADER occurs due to the A-D converter of the controller failing.
3. Output 1 and output 2 will perform the failure transfer function as the controller enters failure mode.

Output 1 failure transfer, if activated, will perform:
1. If output 1 is configured as proportional control (PB≠ 0), and BPLS is selected for O1FT, then output 1 will perform bumpless transfer. Thereafter, the previous averaging value of MV1 will be used for controlling output 1.
2. If output 1 is configured as proportional control (PB≠ 0), and a value of 0 to 100.0% is set for O1FT, then output 1 will perform failure transfer. Thereafter, the value of O1FT will be used for controlling output 1.
3. If output 1 is configured as ON-OFF control (PB=0), then output 1 will be driven OFF if OFF is set for O1FT and will be driven ON if ON is set for O1FT.

Output 2 failure transfer, if activated, will perform:
1. If OUT2 is configured as COOL, and BPLS is selected for O1FT, then output 2 will perform bumpless transfer. Thereafter, the previous averaging value of MV2 will be used for controlling output 2.
2. If OUT2 is configured as COOL, and a value of 0 to 100.0% is set for O2FT, then output 2 will perform failure transfer. Thereafter, the value of O1FT will be used for controlling output 2.
3. If OUT2 is configured as alarm function, and O2FT is set to OFF, then output 2 will go off. Otherwise, output 2 will go on if O2FT is set to ON.

Alarm failure transfer is activated as the controller enters failure mode. Thereafter, the alarm will transfer to the ON or OFF state preset by ALFT.
3–11 Auto-tuning

The auto-tuning process is performed near the set point. The process will oscillate around the set point during the tuning process. Set the set point at a lower value if overshooting beyond the normal process value is likely to cause damage.

Auto-tuning is applied in cases of:

- Initial setup for a new process
- The set point is changed substantially from the previous auto-tuning value
- The control result is unsatisfactory

Operation:

1. The system has been installed normally.
2. Set the correct values for the setup menu of the unit, but don’t set a zero value for PB and TI, or the auto-tuning program will be disabled. The LOCK parameter should be set at NONE.
3. Set the set point to a normal operating value, or a lower value if overshooting beyond the normal process value is likely to cause damage.
4. Press and hold until appears on the display.
5. Then press again for at least 5 seconds. The AT indicator will begin to flash and the auto-tuning procedure begins.

NOTE: The ramping function, if used, will be disabled when auto-tuning is taking place.

Auto-tuning mode is disabled as soon as either failure mode or manual control mode is entered.

Procedures:
Auto-tuning can be applied either as the process is warming up (cold start), or when the process has been in a steady state (warm start). After the auto-tuning procedures are completed, the AT indicator will cease to flash and the unit will revert to PID control using its new PID values. The PID values obtained are stored in the nonvolatile memory.

Auto-Tuning Error
If auto-tuning fails an ATER message will appear on the upper display in the following cases:

- If PB exceeds 9000 (9000 PU, 900.0°F or 500.0°C),
- if TI exceeds 1000 seconds,
- if the set point is changed during the auto-tuning procedure.

Solutions to Auto-Tuning Error

1. Try auto-tuning once again.
2. Don’t change the set point value during the auto-tuning procedure.
3. Don’t set a zero value for PB and TI.
4. Use manual tuning instead of auto-tuning (see section 3-12).
5. Touch RESET key to reset message.

3–12 Manual Tuning

In certain applications auto-tuning may be inadequate for the control requirements. You can try manual tuning for these applications.

If the control performance using auto-tuning is still unsatisfactory, the following rules can be applied for further adjustment of PID values:

<table>
<thead>
<tr>
<th>ADJUSTMENT SEQUENCE</th>
<th>SYMPTOM</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Proportional Band (PB)</td>
<td>Slow Response</td>
<td>Decrease PB</td>
</tr>
<tr>
<td>(2) Integral Time (TI)</td>
<td>High overshoot or Oscillations</td>
<td>Increase TI</td>
</tr>
<tr>
<td>(3) Derivative Time (TD)</td>
<td>Instability or Oscillations</td>
<td>Increase TD</td>
</tr>
<tr>
<td></td>
<td>Slow Response or Oscillations</td>
<td>Decrease TD</td>
</tr>
<tr>
<td></td>
<td>High Overshoot</td>
<td>Increase TD</td>
</tr>
</tbody>
</table>

Table 3.2 PID Adjustment Guide

Figure 3.9 Effects of PID Adjustment

Figure 3.9 shows the effects of PID adjustment on process response.
3–13 Manual Control

Operation
To enable manual control, the LOCK parameter should be set to NONE, then press \(\square \) for 6.2 seconds; \(\text{Hand control} \) will appear on the display. Press \(\square \) for 5 seconds, then the MAN indicator will begin to flash and the lower display will show \(\text{Hand control} \). The controller is now in manual control mode. \(\text{Hand control} \) indicates output control variable for output 1, and \(\text{Hand control} \) indicates control variable for output 2. Now you can use the up and down keys to adjust the percentage values for the heating or cooling output.

The controller performs open loop control as long as it stays in manual control mode.

Exit Manual Control
Pressing the \(\square \) key will cause the controller to revert to its normal display mode.

3–14 Data Communication

The controllers support RTU mode of Modbus protocol for data communication. Other protocols are not available for this series.

Two types of interface are available for data communication. These are RS-485 and RS-232 interface. Since RS-485 uses a differential architecture to drive and sense signal instead of a single-ended architecture like the one used for RS-232, RS-485 is less sensitive to noise and suitable for communication over a longer distance. RS-485 can communicate without error over a 1km distance while RS-232 is not recommended for a distance of over 20 meters.

Using a PC for data communication is the most economical method. The signal is transmitted and received through the PC communication port (generally RS-232). Since a standard PC can't support an RS-485 port, a network adapter (such as TEC 99001) has to be used to convert RS-485 to RS-232 for a PC if RS-485 is required for data communication. Up to 247 RS-485 units can be connected to one RS-232 port; therefore a PC with four comm ports can communicate with 988 units.

Setup
Enter the setup menu. Select RTU for COMM. Set individual addresses for any units that are connected to the same port. Set the baud rate (BAUD), data bit (DATA), parity bit (PARI) and stop bit (STOP) so that these values are accordant with PC setup conditions.

If you use a conventional 9-pin RS-232 cable instead of TEC99014, the cable should be modified for proper operation of RS-232 communication according to section 2.9.

Refer to chapter 7 for a complete technical description of the Modbus Communications Protocol.

3–15 Process Variable (PV)
Retransmission
The controller can output (retransmit) the process value via its retransmission terminals RE+ and RE- provided that the retransmission option is ordered. A correct signal type should be selected for COMM parameter to meet the retransmission option installed. RELO and REHI are set to specify the low scale and high scale values of retransmission.
Chapter 4 Applications

4–1 Heat Only Control with Dwell Timer

An oven is designed to dry products at 150°C for 30 minutes and then stay unpowered for another batch. A TEC-8100 equipped with dwell timer is used for this purpose. The system diagram is shown as follows:

To achieve this function, set the following parameters in the setup menu:

- **INPT=K_TC**
- **UNIT=°C**
- **DP=1_DP**
- **OUT1=REVR**
- **O1TY=RELY**
- **CYC1=18.0**
- **O1FT=0.0**
- **ALFN=TIMR**
- **ALFT=ON**

Auto-tuning is performed at 150°C for this application.

4–2 Cool Only Control

A TEC-8100 is used to control a refrigerator at temperatures below 0°C. This temperature is lower than the ambient, so a cooling action is required. Select DIRT for OUT1. Since output 1 is used to drive a magnetic contactor, O1TY should be set to RELY. A small temperature oscillation is tolerable, so use ON-OFF control to reduce the over-all cost. To use ON-OFF control, set PB to zero and O1HY at 0.1°C.

Figure 4.1 Heating Control Example

Figure 4.2 Cooling Control Example
4-3 Heat-Cool Control

An injection mold is required to be controlled at 120°C to ensure a consistent quality for the parts. An oil pipe is buried in the mold. Since plastics are injected at a higher temperature (e.g., 250°C), the circulation oil needs to be cooled as its temperature rises. Here is an example:

The PID heat-cool is used for the example at left. To achieve this, set the following parameters in the setup menu:
INPT=PT.DN
UNIT=°C
DP= 1-DP
OUT1=REVR
O1TY=RELY
CYC1=18.0 (sec.)
O1FT=0.0
OUT2=COOL
O2TY=4–20
O2FT=BPLS
Set SV at 120.0°C, CPB at 125(%) and DB at -4.0(%). Apply auto-tuning at 120°C for a new system to get optimal PID values. See section 3-11.
Adjustment of CPB is related to the cooling medium used. If water is used as the cooling medium instead of oil, the CPB should be set at 250(%). If air is used as the cooling medium instead of oil, the CPB should be set at 100(%).
The adjustment of DB is dependent on the system requirements. A higher positive value of DB will prevent unwanted cooling action, but will increase the temperature overshoot, while a lower negative value of DB will result in less temperature overshoot, but will increase unwanted cooling action.
Chapter 6 Specifications

Power
90–250 VAC, 47–63 Hz, 12VA, 5W maximum
11–26VAC/VDC, 12VA, 5W maximum

Input
Resolution: 18 bits
Sampling rate: 5 samples / second
Maximum rating: –2VDC minimum, 12VDC maximum
(1 minute for mA input)

Temperature effect:
±1.5μV/°C for all inputs except mA input
±3.0μV/°C for mA input

Sensor lead resistance effect:
T/C: 0.2uV/ohm
3-wire RTD: 2.6°C/ohm of resistance difference of two leads
2-wire RTD: 2.6°C/ohm of resistance sum of two leads

Common mode rejection ratio (CMRR): 120dB
Normal mode rejection ratio (NMRR): 55dB

Sensor break detection:
Sensor open for TC, RTD and mV inputs,
Sensor short for RTD input,
Below 1mA for 4–20mA input,
Below 0.25V for 1–5V input,
unavailable for other inputs.

Sensor break responding time:
Within 4 seconds for TC, RTD, and mV inputs, 0.1 seconds for 4–20mA and 1–5V inputs.

Output 1/Output 2
Relay rating: 2A/240VAC, 200,000 life cycles for resistive load

Pulsed voltage: Source voltage 5V, current limiting resistance 66 Ohms.

Linear Output
Resolution: 15 bits
Output regulation: 0.02% for full load change
Output settling time: 0.1 sec. (stable to 99.9%)
Isolation breakdown voltage: 1000VAC
Temperature effect: ±0.01% of SPAN/°C

Triac (SSR) Output
Rating: 1A/240 VAC
Inrush current: 20A for 1 cycle
Min. load current: 50mA rms
Max. off-state leakage: 3mA rms
Max. on-state voltage: 1.5V rms
Insulation resistance: 1000Mohms min. at 500 VDC
Dielectric strength: 2500VAC for 1 minute

Characteristics:

<table>
<thead>
<tr>
<th>Type</th>
<th>Range</th>
<th>Accuracy @ 25°C</th>
<th>Input Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>-120°C to 1000°C (-184°F to 1832°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>K</td>
<td>-200°C to 1370°C (-328°F to 2498°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>T</td>
<td>-250°C to 400°C (-418°F to 752°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>E</td>
<td>-100°C to 900°C (-148°F to 1652°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>B</td>
<td>0°C to 1800°C (32°F to 3272°F)</td>
<td>±2°C (200°C to 1800°C)</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>R</td>
<td>0°C to 1767.8°C (32°F to 3214°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>S</td>
<td>0°C to 1767.8°C (32°F to 3214°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>N</td>
<td>-250°C to 1300°C (-418°F to 2372°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>L</td>
<td>-200°C to 900°C (-328°F to 1652°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>PT100 (DIN)</td>
<td>-210°C to 700°C (-346°F to 1292°F)</td>
<td>±0.4°C</td>
<td>1.3 KΩ</td>
</tr>
<tr>
<td>PT100 (JIS)</td>
<td>-200°C to 600°C (-328°F to 1112°F)</td>
<td>±0.4°C</td>
<td>1.3 KΩ</td>
</tr>
<tr>
<td>mV</td>
<td>-8mV to 70mV</td>
<td>±0.05%</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>mA</td>
<td>-3mA to 27mA</td>
<td>±0.05%</td>
<td>70.5 Ω</td>
</tr>
<tr>
<td>V</td>
<td>-1.3V to 11.5V</td>
<td>±0.05%</td>
<td>650 KΩ</td>
</tr>
</tbody>
</table>

Linear Output Characteristics

<table>
<thead>
<tr>
<th>Type</th>
<th>Zero Tolerance</th>
<th>Span Tolerance</th>
<th>Load Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>±-20mA</td>
<td>3.8-4mA</td>
<td>20-21mA</td>
<td>500Ω max.</td>
</tr>
<tr>
<td>0-20mA</td>
<td>0 mA</td>
<td>20-21mA</td>
<td>500Ω max.</td>
</tr>
<tr>
<td>0 – 5 V</td>
<td>0 V</td>
<td>5 – 5.25 V</td>
<td>10 KΩ min.</td>
</tr>
<tr>
<td>1 – 5 V</td>
<td>0.9 – 1 V</td>
<td>5 – 5.25 V</td>
<td>10 KΩ min.</td>
</tr>
<tr>
<td>0 – 10 V</td>
<td>0 V</td>
<td>10 –10.5 V</td>
<td>10 KΩ min.</td>
</tr>
</tbody>
</table>

DC Voltage Supply Characteristics (Installed at Output 2)

<table>
<thead>
<tr>
<th>Type</th>
<th>Tolerance</th>
<th>Max. Output Current</th>
<th>Ripple Voltage</th>
<th>Isolation Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 V</td>
<td>± .5 V</td>
<td>25 mA</td>
<td>0.2 Vp-p</td>
<td>500 VAC</td>
</tr>
<tr>
<td>12 V</td>
<td>± 0.3 V</td>
<td>40 mA</td>
<td>0.1 Vp-p</td>
<td>500 VAC</td>
</tr>
<tr>
<td>5 V</td>
<td>± 0.15 V</td>
<td>80 mA</td>
<td>0.05 Vp-p</td>
<td>500 VAC</td>
</tr>
</tbody>
</table>
Alarm
Alarm relay: Form C
2A/240VAC, 200,000 life cycles for resistive load.
Alarm functions:
 - Dwell timer
 - Deviation high/low alarm
 - Deviation band high/low alarm
 - PV high/low alarm
Alarm modes: Normal, latching, hold, latching/hold.
Dwell timer: 0.1–4553.6 minutes

Data Communication
Interface: RS-232 (1 unit), RS-485 (up to 247 units)
Protocol: Modbus protocol RTU mode
Address: 1–247
Baud rate: 2.4–38.4Kbits/sec
Data bits: 7 or 8 bits
Parity bit: None, even or odd
Stop bit: 1 or 2 bits
Communication buffer: 160 bytes

Analog Retransmission
Output Signal: 4-20mA, 0-20mA, 0-5V, 1-5V, 0-10V
Resolution: 15 bits
Accuracy: ± 0.005% of span ± 0.0025% / °C
Load Resistance:
 - 0-500 Ohms (for current output)
 - 10K Ohms minimum (for voltage output)
Output Regulation: 0.01% for full load charge
Output Settling Time: 0.1sec (stable to 99.9%)
Isolation Breakdown Voltage: 1000 Vac for 1 min.
Integral Linearity Error: ±0.005% of span
Temperature Effect: ±0.0025% of span/°C
Saturation Low: 0 mA or (0V)
Saturation High: 22.2 mA (or 5.55V, 11.1V/min)
Linear Output Range: 0-22.2 mA (0-20 mA or 4-20 mA)
 - 0-5.55V (0-5V, 1-5V)
 - 0-11.1 V (0-10V)

User Interface
Dual 4-digit LED displays
Keypad: 4 keys
Programming port: For automatic setup, calibration and testing
Communication port: Connection to PC for supervisory control

Control Mode
Output 1: Reverse (heating) or direct (cooling) action
Output 2: PID cooling control, cooling P band 50 – 300% of PB, dead band -36.0 – 36.0% of PB
ON-OFF: 0.1 – 90.0 (°F) hysteresis control (P band=0)
P or PD: 0 – 100.0% offset adjustment

PID: Fuzzy logic modified
 - Proportional band 0.1–900.0°F
 - Integral time 0–1000 seconds
 - Derivative time 0–360.0 seconds
Cycle time: 0.1–90.0 seconds
Manual control: Heat (MV1) and cool (MV2)
Auto-tuning: Cold start and warm start
Failure mode: Auto-transfer to manual mode while sensor break or A-D converter damage
Ramping control: 0–900.0°F/minute or 0–900.0°F/hour ramp rate

Digital Filter
Function: First order
Time constant: 0, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 60 seconds programmable

Environmental and Physical
Operating temperature: -10°C to 50°C (14°F to 122°F)
Storage temperature: -40°C to 60°C (-40°F to 140°F)
Humidity: 0 to 90% RH (non-condensing)
Insulation resistance: 20Mohms min. (at 500VDC)
Dielectric strength: 2000VAC, 50/60 Hz for 1 minute
Vibration resistance: 10–55 Hz, 10 m/s² for 2 hours
Shock resistance: 200m/s² (20g)
Moldings: Flame retardant polycarbonate

Dimensions:
TEC-4100 — 3-3/4 × 3-3/4 × 2-9/16" H x W x D (96 × 96 × 65 mm)
 - Depth behind panel: 2" (53 mm)
TEC-7100 — 2-27/32 × 2-27/32 × 3" H x W x D (72 × 72 × 78 mm)
 - Depth behind panel: 2-9/16" (65 mm)
TEC-8100 — 3-3/4 × 1-7/8 × 3-1/8" H x W x D (96 × 48 × 80 mm)
 - Depth behind panel: 2-9/16" (65 mm)
TEC-9100 — 1-7/8 × 1-7/8 × 4-9/16" H x W x D (48 × 48 × 116 mm)
 - Depth behind panel: 4" (105 mm)

Weight: TEC-4100—250 grams
 - TEC-7100—200 grams
 - TEC-8100—210 grams
 - TEC-9100—150 grams

Approval Standards
Safety: UL61010C-1
 - CSA C22.2 No. 24-93
 - EN61010-1 (IEC1010-1)
Protective class:
 - IP65 for panel with additional option
 - IP50 for panel without additional option
All indoor use.
EMC: EN61326
Chapter 7 Modbus Communications

This chapter specifies the Modbus Communications protocol as RS-232 or RS-485 interface module is installed. Only RTU mode is supported. Data is transmitted as eight-bit binary bytes with 1 start bit, 1 stop bit and optional parity checking (None, Even or Odd). Baud rate may be set to 2400, 4800, 9600, 14400, 19200, 28800 and 38400.

7-1 Functions Supported

Only function 03, 06 and 16 are available for this series of controllers. The message formats for each function are described as follows:

Function 03: Read Holding Registers

Query: (from Master)
Slave address (0-255)
Function code (3)
Starting address of register Hi (0)
Starting address of register Lo (0-79, 128-131)
No. of words Hi (0)
No. of words Lo (1-79)
CRC16 Hi
CRC16 Lo

Response: (from Slave)
Byte count
Data 1 Hi
Data 1 Lo
Data 2 Hi
Data 2 Lo

Function 06: Preset Single Register

Query: (from Master)
Slave address (0-255)
Function code (6)
Register address Hi (0)
Register address Lo (0-79, 128-131)
Data Hi
Data Lo
CRC16 Hi
CRC16 Lo

Response: (from Slave)

Function 16: Preset Multiple Registers

Query: (from Master)
Slave address (0-255)
Function code (16)
Starting address of register Hi (0)
Starting address of register Lo (0-79, 128-131)
No. of words Hi (0)
No. of words Lo (1-79)
Byte count (2-158)
Data 1 Hi
Data 1 Lo
Data 2 Hi
Data 2 Lo

Response: (from Slave)
CRC16 Hi
CRC16 Lo
7-2 Exception Responses

If the controller receives a message which contains a corrupted character (parity check error, framing error etc.), or if the CRC16 check fails, the controller ignores the message. However, if the controller receives a syntactically correct message which contains an illegal value, it will send an exception response, consisting of five bytes as follows:

slave address +offset function code + exception code + CRC16 Hi +CRC16 Lo

Where the offset function code is obtained by adding the function code with 128 (ie. function 3 becomes H'83), and the exception code is equal to the value contained in the following table:

<table>
<thead>
<tr>
<th>Exemption Code</th>
<th>Name</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bad Function Code</td>
<td>Function code is not supported by the controller</td>
</tr>
<tr>
<td>2</td>
<td>Illegal data address</td>
<td>Register address out of range</td>
</tr>
<tr>
<td>3</td>
<td>Illegal data value</td>
<td>Data value out of range or attempt to write a read-only or protected data</td>
</tr>
</tbody>
</table>

7-3 Parameter Table

<table>
<thead>
<tr>
<th>Register Address</th>
<th>Parameter Notation</th>
<th>Parameter</th>
<th>Scale Low</th>
<th>Scale High</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SP1</td>
<td>Set Point 1</td>
<td>*4</td>
<td>*4</td>
<td>R/W</td>
</tr>
<tr>
<td>1</td>
<td>SP2</td>
<td>Set Point 2</td>
<td>*7</td>
<td>*7</td>
<td>R/W</td>
</tr>
<tr>
<td>2</td>
<td>SP3</td>
<td>Set Point 3</td>
<td>*6</td>
<td>*6</td>
<td>R/W</td>
</tr>
<tr>
<td>3</td>
<td>LOCK</td>
<td>Lock code</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>4</td>
<td>INPT</td>
<td>Input sensor selection</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>5</td>
<td>UNIT</td>
<td>Measuring unit</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>6</td>
<td>DP</td>
<td>Decimal point position</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>7</td>
<td>INLO</td>
<td>Low scale value for linear input</td>
<td>*4</td>
<td>*4</td>
<td>R/W</td>
</tr>
<tr>
<td>8</td>
<td>INHI</td>
<td>High scale value for linear input</td>
<td>*4</td>
<td>*4</td>
<td>R/W</td>
</tr>
<tr>
<td>9</td>
<td>SP1L</td>
<td>Low limit of SP1</td>
<td>*4</td>
<td>*4</td>
<td>R/W</td>
</tr>
<tr>
<td>10</td>
<td>SP1H</td>
<td>High Limit of SP1</td>
<td>*4</td>
<td>*4</td>
<td>R/W</td>
</tr>
<tr>
<td>11</td>
<td>SHIF</td>
<td>PV shift value</td>
<td>*4</td>
<td>*4</td>
<td>R/W</td>
</tr>
<tr>
<td>12</td>
<td>FILT</td>
<td>Filter time constant</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>13</td>
<td>DISP</td>
<td>Display form</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>14</td>
<td>PB</td>
<td>P (proportional) band</td>
<td>*5</td>
<td>*5</td>
<td>R/W</td>
</tr>
<tr>
<td>15</td>
<td>TI</td>
<td>Integral time</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>16</td>
<td>TD</td>
<td>Derivative time</td>
<td>0.0</td>
<td>6553.5</td>
<td>R/W</td>
</tr>
<tr>
<td>17</td>
<td>OUT1</td>
<td>Output 1 function</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>18</td>
<td>O1TY</td>
<td>Output 1 signal type</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>19</td>
<td>O1FT</td>
<td>Output 1 failure transfer</td>
<td>-1999.9</td>
<td>4553.6</td>
<td>R/W</td>
</tr>
<tr>
<td>20</td>
<td>O1HY</td>
<td>Output 1 ON-OFF hysteresis</td>
<td>*5</td>
<td>*5</td>
<td>R/W</td>
</tr>
<tr>
<td>21</td>
<td>CYC1</td>
<td>Output 1 cycle time</td>
<td>0.0</td>
<td>6553.5</td>
<td>R/W</td>
</tr>
<tr>
<td>22</td>
<td>OFST</td>
<td>Offset value for P control</td>
<td>0.0</td>
<td>6553.5</td>
<td>R/W</td>
</tr>
<tr>
<td>23</td>
<td>RAMP</td>
<td>Ramp function</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>24</td>
<td>RR</td>
<td>Ramp rate</td>
<td>*5</td>
<td>*5</td>
<td>R/W</td>
</tr>
<tr>
<td>25</td>
<td>OUT2</td>
<td>Output 2 function</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>26</td>
<td>RELO</td>
<td>Retransmission low scale value</td>
<td>*4</td>
<td>*4</td>
<td>R/W</td>
</tr>
<tr>
<td>27</td>
<td>O2TY</td>
<td>Output 2 signal type</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>28</td>
<td>O2FT</td>
<td>Output 2 failure transfer</td>
<td>-1999.9</td>
<td>4553.6</td>
<td>R/W</td>
</tr>
<tr>
<td>29</td>
<td>O2HY</td>
<td>Output 2 ON-OFF hysteresis</td>
<td>*5</td>
<td>*5</td>
<td>R/W</td>
</tr>
<tr>
<td>30</td>
<td>CYC2</td>
<td>Output 2 cycle time</td>
<td>0.0</td>
<td>6553.5</td>
<td>R/W</td>
</tr>
<tr>
<td>31</td>
<td>CPB</td>
<td>Cooling P band</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>32</td>
<td>DB</td>
<td>Heating-cooling dead band</td>
<td>-1999.9</td>
<td>4553.6</td>
<td>R/W</td>
</tr>
<tr>
<td>Register Address</td>
<td>Parameter Notation</td>
<td>Parameter Notation</td>
<td>Scale Low</td>
<td>Scale High</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>33</td>
<td>ALPN</td>
<td>Alarm Function</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>34</td>
<td>REHI</td>
<td>Retransmission high scale value</td>
<td>*4</td>
<td>*4</td>
<td>R/W</td>
</tr>
<tr>
<td>35</td>
<td>ALMD</td>
<td>Alarm operation mode</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>36</td>
<td>ALHY</td>
<td>Alarm hysteresis</td>
<td>*5</td>
<td>*5</td>
<td>R/W</td>
</tr>
<tr>
<td>37</td>
<td>ALFT</td>
<td>Alarm failure transfer</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>38</td>
<td>COMM</td>
<td>Communication function</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>39</td>
<td>ADDR</td>
<td>Address</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>40</td>
<td>BAUD</td>
<td>Baud rate</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>41</td>
<td>DATA</td>
<td>Data bit count</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>42</td>
<td>PARI</td>
<td>Parity bit</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>43</td>
<td>STOP</td>
<td>Stop bit count</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>44</td>
<td>SEL1</td>
<td>Selection 1</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>45</td>
<td>SEL2</td>
<td>Selection 2</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>46</td>
<td>SEL3</td>
<td>Selection 3</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>47</td>
<td>SEL4</td>
<td>Selection 4</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>48</td>
<td>SEL5</td>
<td>Selection 5</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>49</td>
<td>SEL6</td>
<td>Selection 6</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>50</td>
<td>SEL7</td>
<td>Selection 7</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>51</td>
<td>SEL8</td>
<td>Selection 8</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>52</td>
<td>ADLO</td>
<td>mV calibration low coefficient</td>
<td>-1999.9</td>
<td>4553.6</td>
<td>R/W</td>
</tr>
<tr>
<td>53</td>
<td>ADHI</td>
<td>mV calibration high coefficient</td>
<td>-1999.9</td>
<td>4553.6</td>
<td>R/W</td>
</tr>
<tr>
<td>54</td>
<td>RTDL</td>
<td>RTD calibration low coefficient</td>
<td>-1999.9</td>
<td>4553.6</td>
<td>R/W</td>
</tr>
<tr>
<td>55</td>
<td>RTDH</td>
<td>RTD calibration high coefficient</td>
<td>-1999.9</td>
<td>4553.6</td>
<td>R/W</td>
</tr>
<tr>
<td>56</td>
<td>CJLO</td>
<td>Cold junction calibration low coefficient</td>
<td>-199.99</td>
<td>455.36</td>
<td>R/W</td>
</tr>
<tr>
<td>57</td>
<td>CJHI</td>
<td>Cold junction calibration high coefficient</td>
<td>-199.99</td>
<td>455.36</td>
<td>R/W</td>
</tr>
<tr>
<td>58</td>
<td>DATE</td>
<td>Date code</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>59</td>
<td>SRNO</td>
<td>Serial number</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>60</td>
<td>HOUR</td>
<td>Working hours of the controller</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>61</td>
<td>BPL1</td>
<td>Bumpless transfer of OP1</td>
<td>0</td>
<td>65535</td>
<td>R</td>
</tr>
<tr>
<td>62</td>
<td>BPL2</td>
<td>Bumpless transfer of OP2</td>
<td>0.00</td>
<td>655.35</td>
<td>R</td>
</tr>
<tr>
<td>63</td>
<td>CJCL</td>
<td>Cold junction signal low</td>
<td>0.000</td>
<td>65.535</td>
<td>R</td>
</tr>
<tr>
<td>64, 128</td>
<td>PV</td>
<td>Process value</td>
<td>*4</td>
<td>*4</td>
<td>R</td>
</tr>
<tr>
<td>65, 129</td>
<td>SV</td>
<td>Current set point value</td>
<td>*4</td>
<td>*4</td>
<td>R</td>
</tr>
<tr>
<td>66, 130</td>
<td>MV1</td>
<td>OP1 control output value</td>
<td>0.00</td>
<td>655.35</td>
<td>R/W</td>
</tr>
<tr>
<td>67, 131</td>
<td>MV2</td>
<td>OP2 control output value</td>
<td>0.00</td>
<td>655.35</td>
<td>Read only unless in manual control</td>
</tr>
<tr>
<td>68</td>
<td>TIMER</td>
<td>Remaining time of dwell timer</td>
<td>-1999.9</td>
<td>4553.6</td>
<td>R</td>
</tr>
<tr>
<td>69</td>
<td>EROR</td>
<td>Error code *1</td>
<td>0</td>
<td>65535</td>
<td>R</td>
</tr>
<tr>
<td>70</td>
<td>MODE</td>
<td>Operation mode and alarm status *2</td>
<td>0</td>
<td>65535</td>
<td>R</td>
</tr>
<tr>
<td>71, 140</td>
<td>PROG</td>
<td>Program code *3</td>
<td>0.00</td>
<td>655.35</td>
<td>R</td>
</tr>
<tr>
<td>72</td>
<td>CMND</td>
<td>Command code</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>73</td>
<td>JOB1</td>
<td>Job code</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>74</td>
<td>JOB2</td>
<td>Job code</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>75</td>
<td>JOB3</td>
<td>Job code</td>
<td>0</td>
<td>65535</td>
<td>R/W</td>
</tr>
<tr>
<td>76</td>
<td>CJCT</td>
<td>Cold Junction Temperature</td>
<td>-199.99</td>
<td>455.36</td>
<td>R</td>
</tr>
<tr>
<td>77</td>
<td>Reserved</td>
<td></td>
<td>0</td>
<td>65535</td>
<td>R</td>
</tr>
<tr>
<td>78</td>
<td>Reserved</td>
<td></td>
<td>0</td>
<td>65535</td>
<td>R</td>
</tr>
<tr>
<td>79</td>
<td>Reserved</td>
<td></td>
<td>0</td>
<td>65535</td>
<td>R</td>
</tr>
</tbody>
</table>
*1 The error code is shown in the first column of Table A.1 page 28.

*2 Definition for the value of MODE register:

- H’000X = Normal mode
- H’010X = Calibration mode
- H’020X = Auto-tuning mode
- H’030X = Manual control mode
- H’040X = Failure mode

The alarm status is shown in MV2 instead of MODE for models TEC-220 and TEC-920.

*3 The PROG Code is defined in the following table

<table>
<thead>
<tr>
<th>Model No.</th>
<th>TEC-9100</th>
<th>TEC-8100</th>
<th>TEC-4100</th>
<th>TEC-7100</th>
<th>TEC-220</th>
<th>TEC-920</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROG Code</td>
<td>6.XX</td>
<td>11.XX</td>
<td>12.XX</td>
<td>13.XX</td>
<td>33.XX</td>
<td>34.XX</td>
</tr>
</tbody>
</table>

(xx denotes the software version)

*4 The scale high/low values are defined in the following table for SP1, INLO, INHI, SP1L, SP1H, SHIF, PV, SV, RELO and REHI:

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Non-linear input</th>
<th>Linear input DP = 0</th>
<th>Linear input DP = 1</th>
<th>Linear input DP = 2</th>
<th>Linear input DP = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale High</td>
<td>4553.6</td>
<td>45536</td>
<td>4553.6</td>
<td>455.36</td>
<td>45.536</td>
</tr>
</tbody>
</table>

*5 The scale high/low values are defined in the following table for PB, O1HY, RR, O2HY, and ALHY:

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Non-linear input</th>
<th>Linear input DP = 0</th>
<th>Linear input DP = 1</th>
<th>Linear input DP = 2</th>
<th>Linear input DP = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale low</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.000</td>
</tr>
<tr>
<td>Scale High</td>
<td>6553.5</td>
<td>65535</td>
<td>6553.5</td>
<td>655.35</td>
<td>65.535</td>
</tr>
</tbody>
</table>

*6 The scale high/low values are defined in the following table for SP3:

<table>
<thead>
<tr>
<th>Conditions</th>
<th>ALFN=1 (TIMR)</th>
<th>Non-linear input</th>
<th>Linear input DP = 0</th>
<th>Linear input DP = 1</th>
<th>Linear input DP = 2</th>
<th>Linear input DP = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale High</td>
<td>4553.6</td>
<td>45536</td>
<td>4553.6</td>
<td>455.36</td>
<td>45.536</td>
<td></td>
</tr>
</tbody>
</table>

*7 The scale high/low values are defined in the following table for SP2:

For TEC-220 and TEC-920

<table>
<thead>
<tr>
<th>Conditions</th>
<th>OUT2=1 (TIMR)</th>
<th>Non-linear input</th>
<th>Linear input DP = 0</th>
<th>Linear input DP = 1</th>
<th>Linear input DP = 2</th>
<th>Linear input DP = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale High</td>
<td>4553.6</td>
<td>45536</td>
<td>4553.6</td>
<td>455.36</td>
<td>45.536</td>
<td></td>
</tr>
</tbody>
</table>

For TEC-9100, TEC-8100, TEC-7100 and TEC-4100:

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Non-linear input</th>
<th>Linear input DP = 0</th>
<th>Linear input DP = 1</th>
<th>Linear input DP = 2</th>
<th>Linear input DP = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale High</td>
<td>4553.6</td>
<td>45536</td>
<td>4553.6</td>
<td>455.36</td>
<td>45.536</td>
</tr>
</tbody>
</table>

7-4 Data Conversion

The word data are regarded as unsigned (positive) data in the Modbus message. However, the actual value of the parameter may be a negative value with decimal point. The high/low scale values for each parameter are used for the purpose of such conversion.

Let:

- \(M \) = Value of Modbus message
- \(A \) = Actual value of the parameter
- \(SL \) = Scale low value of the parameter
- \(SH \) = Scale high value of the parameter

\[
M = \left(\frac{65535}{SH - SL} \right) \times (A - SL)
\]

\[
A = \left(\frac{SH - SL}{65535} \right) \times (M + SL)
\]
7-5 Communication Examples:

Example 1: Download the default values via the programming port
The programming port can perform Modbus communications regardless of the incorrect setup values of address, baud, parity, stop bit, etc. It is especially useful during the first time configuration for the controller. The host must be set with 9600 baud rate, 8 data bits, even parity and 1 stop bit.

The Modbus message frame with hexadecimal values is shown as follows:

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Func.</th>
<th>Starting Addr.</th>
<th>No. of words</th>
<th>Bytes</th>
<th>SP1=25.0</th>
<th>SP2=10.0</th>
<th>Sp3=10.0</th>
<th>LOCK = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>34</td>
<td>68</td>
<td>4F</td>
<td>19</td>
<td>83</td>
</tr>
</tbody>
</table>

INPT = 1, UNIT = 0, DP = 1, INLO = -17.8, INHI = 93.3, SP1L = -17.8, SP1H = 537.8

<table>
<thead>
<tr>
<th>SP1 = 25.0</th>
<th>SP2 = 10.0</th>
<th>Sp3 = 10.0</th>
<th>LOCK = 0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>00</th>
<th>01</th>
<th>00</th>
<th>00</th>
<th>64</th>
<th>00</th>
<th>64</th>
<th>00</th>
<th>FA</th>
<th>00</th>
<th>00</th>
</tr>
</thead>
</table>

SHIF = 0.0, FILT = 2, DISP = 0, PB = 10.0, TI = 100, TD = 25.0, OUT1 = 0

<table>
<thead>
<tr>
<th>00</th>
<th>02</th>
<th>4E</th>
<th>1F</th>
<th>00</th>
<th>00</th>
<th>4E</th>
<th>1F</th>
<th>00</th>
<th>01</th>
<th>00</th>
<th>B4</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>00</th>
</tr>
</thead>
</table>

OUT2 = 2, RELO = 0.0, O2TY = 0, O2FT = 0, O2HY = 0.1, CYC2 = 18.0, CPB = 100

<table>
<thead>
<tr>
<th>00</th>
<th>03</th>
<th>00</th>
<th>00</th>
<th>04</th>
<th>00</th>
<th>07</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>01</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
</table>

ADDR = 1, BAUD = 2, DATA = 1, PARI = 0, STOP = 0, SEL1 = 2, SEL2 = 3

<table>
<thead>
<tr>
<th>04</th>
<th>06</th>
<th>00</th>
<th>07</th>
<th>00</th>
<th>08</th>
<th>00</th>
<th>0A</th>
<th>00</th>
<th>11</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
</table>

SEL3 = 4, SEL4 = 6, SEL5 = 7, SEL6 = 8, SEL7 = 10, SEL8 = 17, CRC16

Example 2: Read PV, SV, MV1 and MV2
Send the following message to the controller via the COMM port or programming port:

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Func.</th>
<th>Starting Addr.</th>
<th>No. of words</th>
<th>CRC16</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>00</td>
<td>H’40</td>
<td>H’80</td>
<td>04</td>
</tr>
</tbody>
</table>

Example 3: Perform Reset Function
(same effect as pressing [R] key)
Query

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Func.</th>
<th>Register Addr.</th>
<th>Data Hi/Lo</th>
<th>CRC16</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>00</td>
<td>H’48</td>
<td>H’68</td>
<td>Hi</td>
</tr>
</tbody>
</table>

Example 4: Enter Auto-tuning Mode
Query

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Func.</th>
<th>Register Addr.</th>
<th>Data Hi/Lo</th>
<th>CRC16</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>00</td>
<td>H’48</td>
<td>H’68</td>
<td>Hi</td>
</tr>
</tbody>
</table>

Example 5: Enter Manual Control Mode
Query

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Func.</th>
<th>Register Addr.</th>
<th>Data Hi/Lo</th>
<th>CRC16</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>00</td>
<td>H’48</td>
<td>H’68</td>
<td>Hi</td>
</tr>
</tbody>
</table>

Example 6: Read All Parameters
Query

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Func.</th>
<th>Starting Addr.</th>
<th>No. of words</th>
<th>CRC16</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>00</td>
<td>00</td>
<td>H’50</td>
<td>Hi</td>
</tr>
</tbody>
</table>

Example 7: Modify the Calibration Coefficient
Preset the CMND register with 26669 before attempting to change the calibration coefficient.

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Func.</th>
<th>Register Addr.</th>
<th>Data Hi/Lo</th>
<th>CRC16</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>00</td>
<td>H’48</td>
<td>H’68</td>
<td>Hi</td>
</tr>
</tbody>
</table>
Table A.1 Error Codes and Corrective Actions

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Display Symbol</th>
<th>Error Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$\textit{Er} , 04$</td>
<td>Illegal setup values being used: Before COOL is used for OUT2, DIRT (cooling action) has already been used for OUT1, or PID mode is not used for OUT1 (that is, $PB=0$ and/or $TI=0$)</td>
<td>Check and correct setup values of OUT2, PB, TI and OUT1. If OUT2 is required for cooling control, the control should use PID mode ($PB=0$, $TI=0$) and OUT1 should use reverse mode (heating action). Otherwise, don’t use OUT2 for cooling control.</td>
</tr>
<tr>
<td>10</td>
<td>$\textit{Er} , 10$</td>
<td>Communication error: bad function code</td>
<td>Correct the communication software to meet the protocol requirements.</td>
</tr>
<tr>
<td>11</td>
<td>$\textit{Er} , 11$</td>
<td>Communication error: register address out of range</td>
<td>Don’t issue an over-range register address to the slave.</td>
</tr>
<tr>
<td>14</td>
<td>$\textit{Er} , 14$</td>
<td>Communication error: attempt to write a read-only data or a protected data</td>
<td>Don’t write a read-only data or a protected data to the slave.</td>
</tr>
<tr>
<td>15</td>
<td>$\textit{Er} , 15$</td>
<td>Communication error: write a value which is out of range to a register</td>
<td>Don’t write an over-range data to the slave register.</td>
</tr>
<tr>
<td>26</td>
<td>\textit{RtEr}</td>
<td>Fail to perform auto-tuning function</td>
<td>1. The PID values obtained after auto-tuning procedure are out of range. Retry auto-tuning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Don’t change set point value during auto-tuning procedure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Don’t set a zero value for PB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Don’t set a zero value for TI.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Press RESET key</td>
</tr>
<tr>
<td>29</td>
<td>\textit{EEPE}</td>
<td>EEPROM can’t be written correctly</td>
<td>Return to factory for repair.</td>
</tr>
<tr>
<td>30</td>
<td>\textit{CJE}</td>
<td>Cold junction compensation for thermocouple malfunction</td>
<td>Return to factory for repair.</td>
</tr>
<tr>
<td>39</td>
<td>\textit{SbEr}</td>
<td>Input sensor break, or input current below 1 mA if 4–20 mA is selected, or input voltage below 0.25V if 1–5V is selected</td>
<td>Replace input sensor.</td>
</tr>
<tr>
<td>40</td>
<td>\textit{AdEr}</td>
<td>A to D converter or related component(s) malfunction</td>
<td>Return to factory for repair.</td>
</tr>
</tbody>
</table>
WARRANTY
Tempco Electric Heater Corporation is pleased to offer suggestions on the use of its products. However, Tempco makes no warranties or representations of any sort regarding the fitness for use, or the application of its products by the Purchaser. The selection, application, or use of Tempco products is the Purchaser's responsibility. No claims will be allowed for any damages or losses, whether direct, indirect, incidental, special, or consequential. Specifications are subject to change without notice. In addition, Tempco reserves the right to make changes—without notification to the Purchaser—to materials or processing that do not affect compliance with any applicable specification. TEC Temperature Controllers are warranted to be free from defects in material and workmanship for two (2) years after delivery to the first purchaser for use. Tempco's sole responsibility under this warranty, at Tempco's option, is limited to replacement or repair, free of charge, or refund of purchase price within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse, or abuse.

RETURNS
No product returns can be accepted without a completed Return Material Authorization (RMA) form.

TECHNICAL SUPPORT
Technical questions and troubleshooting help is available from Tempco. When calling or writing please give as much background information on the application or process as possible.
E-mail: techsupport@tempco.com
Phone: 630-350-2252
800-323-6859

Note: Information in this manual was deemed correct at the time of printing. The policy of Tempco is one of continuous development and product improvement, and we reserve the right to modify specifications and designs without prior notice. Not responsible for typographical errors.
Custom Manufacturer Since 1972

HEAT THINGS UP!
With Thousands of Design Variations
We Make Everything You Need.

Band Heaters Cartridge Heaters
Cast-In Heaters Coil & Cable Heaters
Radiant Heaters Strip Heaters
Flexible Heaters Tubular Heaters
Process Heaters Instrumentation
Temperature Control Temperature Sensors

© Copyright 2019 TEHC. All Rights Reserved