TEC-4500 and TEC-9500
Auto-Tune PID
Ramp & Soak Temperature Controllers
Warning Symbol ⚠️
This symbol calls attention to an operating procedure, practice, or the like which, if not correctly performed or adhered to, could result in personal injury or damage to or destruction of part or all of the product and system. Do not proceed beyond a warning symbol until the indicated conditions are fully understood and met.

Using the Manual
- Installers Read Chapter 1, 2
- System Designer Read All Chapters
- Expert User Read Page 15, 16

Chapter 1 Overview
1-1 General 1
1-2 Hardware Code 3
1-3 Programming Port 4
1-4 Keys and Displays 5
1-5 Menu Overview 6
1-6 Parameter Descriptions 8

Chapter 2 Installation
2-1 Unpacking 12
2-2 Mounting 12
2-3 Wiring Precautions 13
2-4 Power Wiring 14
2-5 Sensor Input Wiring 14
2-6 Control Output Wiring 14
2-7 Alarm Output Wiring 16
2-8 Event Input Wiring 16
2-9 Retransmission Output Wiring 16
2-10 Data Communication 17

Chapter 3 Programming
3-1 Lockout 18
3-2 Signal Input 18
3-3 Event Input 19
3-4 Control Outputs 20
3-5 Alarms 23
3-6 Configuring Home Page 25
3-7 User Calibration 25
3-8 Digital Filter 26
3-9 Failure Transfer 26
3-10 Auto-tuning 27
3-11 Manual Tuning 27
3-12 Manual Mode 28
3-13 Data Communication 28
3-14 Retransmission 28
3-15 Output Scaling 39

Chapter 4 Profile Operation
4-1 What is set point profile 30
4-2 Segment connection 30
4-3 Profile Modes 31
4-4 Running, holding and aborting a profile 31
4-5 Viewing and modifying profile progress 32
4-6 Start 32
4-7 Holdback 32
4-8 Power failure 33
4-9 Configuring the profile 34
4-10 Viewing and creating a profile 35
Controller settings to program a profile 37
4-11 Event Outputs and PID Selection 39

Chapter 5 Applications 40
Chapter 6 Specifications 42
Chapter 7 Modbus Comm. 44
7-1 Functions Supported 44
7-2 Exception Responses 45
7-3 Parameter Table 45
7-4 Number System 45
7-5 Communication Example 46

Appendix
A-1 Error Codes 48

Returns 49

NOTE:
It is strongly recommended that a process should incorporate a LIMIT CONTROL like TEC-910 which will shut down the equipment at a preset process condition in order to preclude possible damage to products or system.
Information in this user's manual is subject to change without notice.

Copyright © 2021, Tempco Electric Heater Corporation, all rights reserved. No part of this publication may be reproduced, transmitted, transcribed or stored in a retrieval system, or translated into any language in any form by any means without the written permission of Tempco Electric Heater Corporation.
Tempco’s TEC-4500 and TEC-9500 Fuzzy Logic plus PID microprocessor-based Ramp and soak controllers incorporate two bright easy to read 4-digit LED displays, indicating process value and set point value. The process value (PV) display is always the top digital display. The setpoint (SV) display is always the bottom display. Fuzzy Logic technology enables a process to reach a predetermined set point in the shortest time with a minimum of overshoot during power-up or external load disturbance.

TEC-9500 is a 1/16 DIN size panel mount Ramp and Soak controller. It can also be used for rail mounting by adding a rail mount kit. TEC-4500 is a 1/4 DIN size panel mount Ramp and Soak controller. These units are powered by an 11–26 or 90–250 VDC/VAC 50/60 Hz supply, incorporating a 2 amp control relay output as standard. The second output can be used as a cooling control or an alarm. Both outputs can select triac, 5V logic output, linear current, or linear voltage to drive an external device. The units are fully programmable for PT100 RTD and thermocouple types J, K, T, E, B, R, S, N, L, C, and P with no need to modify the unit. The input signal is digitized by using an 18-bit A to D converter. Its fast sampling rate allows the unit to control fast processes.

Flexible Configuration of Program
Up to 64 segments can be defined for a profile. Each segment can be configured as a ramp or a dwell (soak) segment or defining a repeat number of cycles at arbitrary location within the profile and finally terminated by an end segment. The user can edit a currently running profile.

Maximum Capacity of Program
There are at most 9 profiles that can be defined and 288 segments total available for all profiles. The profiles are divide into three kinds of length. The short length profile contains 16 segments, the medium length profile contains 32 segments, while the long length profile contains 64 segments at most.

Event Input
The event input feature allows the user to select one of eight functions: enter profile run mode, enter profile hold mode, abort profile mode, enter manual mode, perform failure transfer, enter off mode, advance to the next segment, and select second set of PID values.

Programmable event outputs
Up to three relays are configurable for event outputs and the state of each output can be defined for each segment and end of profile.

Analog retransmission
Output 5 and output 4 (TEC-4500 only) can be equipped with an analog output module. The output can be configured for transmitting the process value as well as set point value.

The ramp and soak series can be configured as a single set point controller (static mode) or a ramp and dwell profiling controller (profile mode). The profile mode feature allows the user to program up to 9 profiles of up to 64 segments each depending on the profile number (ramp, dwell, jump or end). The total segments available for the controller is 288 segments.

Flexible Configuration of Program
Digital communications RS-485 or RS-232 are available as an additional option. These options allow the units to be integrated with supervisory control systems and software. A programming port is available for automatic configuration, calibration, and testing without the need to access the keys on the front panel.

By using proprietary Fuzzy modified PID technology, the control loop will minimize overshoot and undershoot in a short time. The following diagram is a comparison of results with and without Fuzzy technology.

The ramp and soak series is manufactured with custom designed ASIC (Application Specific Integrated Circuit) technology which contains an 18-bit A to D converter for high resolution measurement (true 0.1°F resolution for thermocouple and PT100) and a 15-bit D to A converter for linear current or voltage control output. The ASIC technology provides improved operating performance, low cost, enhanced reliability and higher density.

High accuracy
The ramp and soak series is manufactured with custom designed ASIC (Application Specific Integrated Circuit) technology which contains an 18-bit A to D converter for high resolution measurement (true 0.1°F resolution for thermocouple and PT100) and a 15-bit D to A converter for linear current or voltage control output. The ASIC technology provides improved operating performance, low cost, enhanced reliability and higher density.

Fast sampling rate
The sampling rate of the input A to D converter is 5 times/second. The fast sampling rate allows this series to control fast processes.

Fuzzy control
The function of Fuzzy control is to adjust PID parameters from time to time in order to make manipulation of the output value more flexible and adaptive to various processes. The result is to enable a process to reach a predetermined set point in the shortest time with the minimum of overshoot and undershoot during power-up or external load disturbance.

Digital communication
The controllers can be equipped with an optional RS-485 or RS-232 interface card to provide digital communication. By using twisted pair wires, up to 247 units can be connected together via an RS-485 interface to a host computer.
Programming port
A programming port can be used to connect the controller to a PC for quick configuration.

Auto-tune
The auto-tune function allows the user to simplify initial setup for a new system. An advanced algorithm is used to obtain an optimal set of control parameters for the process. It can be applied either as the process is warming up (cold start) or while the process is in a steady state (warm start).

Lockout protection
Depending on security requirements, a password setting is available to prevent unwanted changes.

Bumpless transfer
Bumpless transfer allows the controller to continue to control if the sensor breaks by using its previous output value. Hence, the process can be controlled temporarily as if the sensor is normal and constant.

Digital filter
A first order low pass filter with a programmable time constant is used to improve the stability of the process value. This is particularly useful in certain applications where the process value is too unstable to be read.

SEL function
The controllers have the flexibility to allow the user to select those parameters which are most significant to him and put these parameters in the front of the display sequence. Up to eight parameters can be selected at one time to allow the user to build his own display sequence.
1–2 Hardware Code

TEC-4500

TEC-9500

Power Input

4 = 90-250 V AC
5 = 11-26 V AC/VDC

Signal Input

Universal, can be programmed in the field
1 = Universal input
 (factory default = TC type J)
 Thermocouple: J, K, T, E, B, R,
 S, N, L, C, P
 RTD: PT100 DIN,
 PT100 JIS (0 to 60 mV)
5 = Voltage: 0-10V, 0-5V, 1-5V, 0-1V
6 = DC Current: 0-20 mA (default), 4-20 mA
9 = Other

Output 1

1 = Relay: 2A/240 V AC
2 = Pulse dc for SSR drive:
 5 Vdc (30 mA max)
3 = Isolated, 4-20 mA (default)
 0-20 mA
4 = Isolated VDC, 1-5 (default)
 0-5, 0-10
6 = Triac-SSR output
 1A/240 V AC
C = Pulse dc for SSR drive:
 14 Vdc (40 mA max)
9 = Other

Case Options

0 = Panel mount standard
1 = Panel mount with NEMA 4X/IP65 front panel

Output 5

0 = None
3 = Retransmission 4-20 mA / 0-20 mA
4 = Retransmission 1-5V / 0-5V/0-10V
7 = Isolated 20V @ 25 mA DC, Output Power Supply
8 = Isolated 12V @ 40 mA DC, Output Power Supply
A = Isolated 5V @ 80 mA DC, Output Power Supply
D = Isolated RS-485 interface
E = Isolated RS-232 interface

Output 4

0 = None
1 = Relay: 2A / 240 VAC
2 = Pulse dc for SSR drive: 5 Vdc (30 mA max)
3 = Isolated, 4-20 mA (default), 0-20 mA
4 = Isolated VDC, 1-5 (default), 0-5, 0-1
6 = Triac-SSR output 1A / 240 VAC
7 = Isolated 20V @ 25 mA DC, Output Power Supply
8 = Isolated 12V @ 40 mA DC, Output Power Supply
A = Isolated 5V @ 80 mA DC, Output Power Supply
C = Pulse dc for SSR drive: 14 VDC (40 mA max)
9 = Other

Output 3

0 = None
1 = Relay: 2A / 240 VAC
2 = Pulse dc for SSR drive: 5 Vdc (30 mA max)
3 = Isolated-SSR output 1A / 240 VAC
7 = Isolated 20V @ 25 mA DC, Output Power Supply
8 = Isolated 12V @ 40 mA DC, Output Power Supply
A = Isolated 5V @ 80 mA DC, Output Power Supply
C = Pulse dc for SSR drive: 14 VDC (40 mA max)
9 = Other

Output 2

0 = None
1 = Relay: 2A / 240 VAC
2 = Pulse dc for SSR drive: 5 Vdc (30 mA max)
3 = Isolated, 4-20 mA (default), 0-20 mA
4 = Isolated VDC, 1-5 (default), 0-5, 0-10
6 = Triac-SSR output 1A / 240 VAC
7 = Isolated 20V @ 25 mA DC, Output Power Supply
8 = Isolated 12V @ 40 mA DC, Output Power Supply
9 = Isolated 5V @ 80 mA DC, Output Power Supply
C = Pulse dc for SSR drive: 14 VDC (40 mA max)
A = Other

Data Communication Accessories:

TEC99001 Smart Network Adapter for third party SCADA software which converts 255 channels of RS-485 or RS-422 to RS-232 Network.

TEC99003 Smart Network Adapter for connecting the programming port to the RS-232 PC serial port. Allows downloading and reading of configuration information directly from a personal computer.

TEC99030 "Tempco Config Set" PC software for use with TEC99003 Smart Network Adapter. *(can be downloaded at no charge from www.tempco.com)*

Minimum System Requirements:
- Microsoft Windows 2000, 98, 95, NT4.0
- Pentium 200 MHz or faster
- 32 MB RAM (64 MB recommended)
- Hard disk space: 2 MB

TEC99011 Connects the controller to the TEC99003 Smart Network Adapter.
A special connector can be used to connect the programming port to a PC for automatic configuration.

The programming port is used for off-line automatic setup and testing procedures only. Do not attempt to make any connections to these pins when the unit is under power.
1–4 Keys and Displays

KEYPAD OPERATION

SCROLL KEY:
This key is used to select a parameter to be viewed or adjusted.

UP KEY:
This key is used to increase the value of the selected parameter.

DOWN KEY:
This key is used to decrease the value of the selected parameter.

RESET KEY:
Press both keys to:
1. Revert the display to show the process value.
2. Reset the latching alarm, once the alarm condition is removed.
3. Stop the manual control mode, auto-tuning mode, and off mode, then enter the static mode.
4. Clear the message of communication error, holdback time out error, and the auto-tuning error.

ENTER KEY:
Press and hold E for 5 seconds to:
1. Run selected mode.
2. Execute calibration procedure for the low point and high point calibration.
3. Press and release to change pages (note key operation flowchart on the following page)

Figure 1.3 Front Panel Description

Figure 1.4 Program Code Display

The unit will display program code of the product for 2.5 seconds during power up.

The display shows program number 37 with program version 12 for TEC-4500.

The display shows program number 38 with program version 12 for TEC-9500.
For Ramp & Soak Profile Settings refer to Chapter 4 page 31.
1–5 Key Operation Flowchart (continued)

Configuration Page

Low Calibration Page

High Calibration Page

Use ▲ or ▼ key to adjust the offset low value (lower display) until the process value (higher display) is equal to the required value, then

Complete calibration procedure for the low point calibration.

Use ▲ or ▼ key to adjust the offset high value (lower display) until the process value (higher display) is equal to the required value, then

Complete calibration procedure for the high point calibration.

O4FT, O4FL and O4FH on TEC-4500 only

Continued...
Parameter Descriptions

<table>
<thead>
<tr>
<th>Register Address</th>
<th>Parameter Notation</th>
<th>Parameter Description</th>
<th>Range</th>
<th>Default Value</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SP1</td>
<td>Controller (Static mode) Set point value</td>
<td>Low: SPLC High: SPHT</td>
<td>25.0°C (77.0°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>1</td>
<td>PFSQ</td>
<td>Profile sequence number</td>
<td>Low: 1.00 High: 9.63</td>
<td>1.00</td>
<td>R/W</td>
</tr>
<tr>
<td>2</td>
<td>TIME</td>
<td>Time remaining for the current segment</td>
<td>Low: 0.00 High: 99.59</td>
<td>—</td>
<td>R/W</td>
</tr>
<tr>
<td>3</td>
<td>CYCL</td>
<td>Cycles remaining for the current profile</td>
<td>Low: 1 High: 9999</td>
<td>10000∞</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>P02</td>
<td>Password entry</td>
<td>Low: 0 High: 9999</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td>5</td>
<td>ASP1</td>
<td>Set point for alarm 1</td>
<td>Low: -32768 High: 32767</td>
<td>10.0°C (18.0°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>6</td>
<td>ASP2</td>
<td>Set point for alarm 2</td>
<td>Low: -32768 High: 32767</td>
<td>10.0°C (18.0°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>7</td>
<td>ASP3</td>
<td>Set point for alarm 3</td>
<td>Low: -32768 High: 32767</td>
<td>10.0°C (18.0°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>8</td>
<td>INPT</td>
<td>Input sensor selection (page 19)</td>
<td>(T/thermocouple)</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>9</td>
<td>UNIT</td>
<td>Input unit selection (page 19)</td>
<td></td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>10</td>
<td>DP</td>
<td>Decimal point (page 19)</td>
<td></td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>11</td>
<td>MODE</td>
<td>Operation mode (page 6)</td>
<td></td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>12</td>
<td>INLO</td>
<td>Input low scale value (page 19)</td>
<td>Low: -32768 High: INHI-50</td>
<td>-17.8°C (6°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>13</td>
<td>INHI</td>
<td>Input high scale value (page 19)</td>
<td>Low: INLO-50 High: 32767</td>
<td>93.3°C (200.0°F)</td>
<td>R/W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Register Address</th>
<th>Parameter Notation</th>
<th>Parameter Description</th>
<th>Range</th>
<th>Default Value</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>PRT</td>
<td>Filter damping time constant of PV (page 27)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>EFIN</td>
<td>Event input function (page 20)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>SPOLO</td>
<td>Low limit of set point value</td>
<td>Low: -32768 High: 32767</td>
<td>57.8°C (130°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>17</td>
<td>SPHI</td>
<td>High limit of set point value</td>
<td>Low: SPLC High: SPHT</td>
<td>57.8°C (130°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>18</td>
<td>OUT1</td>
<td>Output 1 function (page 22)</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>OFFT</td>
<td>Output 1 failure transfer status (page 27)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>OTHER</td>
<td>Output 1 ON-OFF control hysteresis</td>
<td>Low: 0.1 High: 99.0 sec.</td>
<td>18.0</td>
<td>R/W</td>
</tr>
<tr>
<td>21</td>
<td>OPT1</td>
<td>Low limit value for output 1</td>
<td>Low: 0 High: 100.0%</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>22</td>
<td>OPT1</td>
<td>High limit value for output 1</td>
<td>Low: 0 High: 120.0%</td>
<td>100.0</td>
<td>R/W</td>
</tr>
<tr>
<td>23</td>
<td>PD1</td>
<td>Proportional band value 1</td>
<td>Low: 0 High: 500.0°C (800.0°F)</td>
<td>10.0°C (18.0°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>24</td>
<td>T1</td>
<td>Integral time value 1</td>
<td>Low: 0 High: 3600 sec</td>
<td>100</td>
<td>R/W</td>
</tr>
<tr>
<td>25</td>
<td>T1</td>
<td>Derivative time value 1</td>
<td>Low: 0 High: 99.0 sec</td>
<td>25.0</td>
<td>R/W</td>
</tr>
<tr>
<td>26</td>
<td>PD2</td>
<td>Proportional band value 2</td>
<td>Low: 0 High: 500.0°C (800.0°F)</td>
<td>10.0°C (18.0°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>27</td>
<td>TB1</td>
<td>Integral time value 2</td>
<td>Low: 0 High: 3600 sec</td>
<td>100</td>
<td>R/W</td>
</tr>
<tr>
<td>28</td>
<td>T2</td>
<td>Derivative time value 2</td>
<td>Low: 0 High: 99.0 sec</td>
<td>25.0</td>
<td>R/W</td>
</tr>
<tr>
<td>29</td>
<td>OFSET</td>
<td>Offset value for P control (Th=0)</td>
<td>Low: 0.0 High: 100.0%</td>
<td>25.0</td>
<td>R/W</td>
</tr>
<tr>
<td>30</td>
<td>OUT2</td>
<td>Output 2 function</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

(page 28)
Parameter Descriptions — Page 2 of 4

<table>
<thead>
<tr>
<th>Register Address</th>
<th>Parameter Notation</th>
<th>Parameter Description</th>
<th>Range</th>
<th>Default Value</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>O2Ff</td>
<td>Output 2 failure transfer status</td>
<td>Select BPLS (bumpless transfer) or 0.0 - 100.0 % to continue output 2 control function if the sensor input fails, or select OFF (0) or ON (1) for alarm or event output.</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>35</td>
<td>CY2f</td>
<td>Output 2 cycle time</td>
<td>Low: 0.1 to High: 90.0 sec.</td>
<td>18.0</td>
<td>R/W</td>
</tr>
<tr>
<td>36</td>
<td>CPb</td>
<td>Cooling proportional band value</td>
<td>Low: 50 to High: 900 %</td>
<td>100</td>
<td>R/W</td>
</tr>
<tr>
<td>37</td>
<td>DBd</td>
<td>Heating-cooling dead band (negative value - offset)</td>
<td>Low: -38.0 to High: 36.0 %</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>38</td>
<td>OP2L</td>
<td>Low limit value for output 2</td>
<td>Low: 0 to High: 100.0 %</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>39</td>
<td>OP2H</td>
<td>High limit value for output 2</td>
<td>Low: 0 to High: 120.0 %</td>
<td>100.0</td>
<td>R/W</td>
</tr>
<tr>
<td>40</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>OUT3</td>
<td>Output 3 function</td>
<td>0: none - No function; 1: RL2 - Alarm 2 output; 2: rL2 - Reverse alarm 2 output; 3: Eyn2 - Event 2 output; 4: dCPS - DC power supply output.</td>
<td>3</td>
<td>R/W</td>
</tr>
<tr>
<td>43</td>
<td>O3FT</td>
<td>Output 3 failure transfer status</td>
<td>Low: 0 to High: 120.0 %</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>44</td>
<td>OUT4</td>
<td>Output 4 function (for TEG-4500 only)</td>
<td>Low: 0 to High: 120.0 %</td>
<td>100.0</td>
<td>R/W</td>
</tr>
<tr>
<td>45</td>
<td>O4Ff</td>
<td>Output 4 failure transfer status (for TEG-4500 only)</td>
<td>Low: 0 to High: 100.0 %</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>46</td>
<td>OP4L</td>
<td>Low limit value for output 4 (for TEG-4500 only)</td>
<td>Low: 0 to High: 120.0 %</td>
<td>100.0</td>
<td>R/W</td>
</tr>
<tr>
<td>47</td>
<td>OP4H</td>
<td>High limit value for output 4 (for TEG-4500 only)</td>
<td>Low: 0 to High: 120.0 %</td>
<td>100.0</td>
<td>R/W</td>
</tr>
<tr>
<td>48</td>
<td>rE4L</td>
<td>Retransmission: low scale value for output 4 (for TEG-4500 only)</td>
<td>Low: -32768 to High: 32767</td>
<td>0.0 %</td>
<td>R/W</td>
</tr>
<tr>
<td>49</td>
<td>rE4H</td>
<td>Retransmission high scale value for output 4 (for TEG-4500 only)</td>
<td>Low: -32768 to High: 32767</td>
<td>0.0 %</td>
<td>R/W</td>
</tr>
<tr>
<td>50</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>OUT5</td>
<td>Output 5 function (page 20)</td>
<td>0: none - No function; 1: Cm - Communication port; 2: rESP - Retransmit process value; 3: rESP - Retransmit point value; 4: dCPS - DC power supply output.</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>52</td>
<td>OP5L</td>
<td>Low limit value for output 5</td>
<td>Low: 0 to High: 100.0 %</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>53</td>
<td>OP5H</td>
<td>High limit value for output 5</td>
<td>Low: 0 to High: 120.0 %</td>
<td>100.0</td>
<td>R/W</td>
</tr>
<tr>
<td>54</td>
<td>rE5L</td>
<td>Retransmission: low scale value for output 5</td>
<td>Low: -32768 to High: 32767</td>
<td>0.0 %</td>
<td>R/W</td>
</tr>
<tr>
<td>55</td>
<td>rE5H</td>
<td>Retransmission: high scale value for output 5</td>
<td>Low: -32768 to High: 32767</td>
<td>0.0 %</td>
<td>R/W</td>
</tr>
<tr>
<td>56</td>
<td>ADDR</td>
<td>Address assignment of digital communication</td>
<td>Low: 1 to High: 247</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td>57</td>
<td>BAUD</td>
<td>Baud rate of digital communication</td>
<td>0: 24 to 7.4 Kbits/s baud rate; 1: 48 to 4.8 Kbits/s baud rate; 2: 96 to 9.6 Kbits/s baud rate; 3: 144 to 14.4 Kbits/s baud rate; 4: 192 to 19.2 Kbits/s baud rate; 5: 288 to 28.8 Kbits/s baud rate; 6: 384 to 38.4 Kbits/s baud rate.</td>
<td>2</td>
<td>R/W</td>
</tr>
<tr>
<td>58</td>
<td>PAR1</td>
<td>Parity bit for digital communication</td>
<td>0: EVEN; 1: ODD; 2: none - No parity bit.</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>60</td>
<td>ATMD</td>
<td>Alarm 1 operation mode</td>
<td>0: normal - Normal alarm action; 1: Lch: - Latching alarm action; 2: HolD: - Hold alarm action; 3: Lch & HolD: - Latching & hold alarm action.</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>61</td>
<td>A1HY</td>
<td>Hysteresis control for alarm 1</td>
<td>Low: 0.1 to High: 50.0°C (90.0°F)</td>
<td>0.1°C (0.2°F)</td>
<td>R/W</td>
</tr>
<tr>
<td>64</td>
<td>Hysteresis control for alarm 2</td>
<td>Low: 0.1 to High: 50.0°C (90.0°F)</td>
<td>0.1°C (0.2°F)</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>ATMD</td>
<td>Alarm 3 operation mode (for TEG-4500 only)</td>
<td>0: normal - Normal alarm action; 1: Lch: - Latching alarm action; 2: HolD: - Hold alarm action; 3: Lch & HolD: - Latching & hold alarm action.</td>
<td>0</td>
<td>R/W</td>
</tr>
</tbody>
</table>
Parameter Descriptions — Page 3 of 4

<table>
<thead>
<tr>
<th>Register Address</th>
<th>Parameter Notation</th>
<th>Parameter Description</th>
<th>Range</th>
<th>Default Value</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>A3H YR3H</td>
<td>Hysteresis control</td>
<td>Low: 0.1</td>
<td>High: 50.0°C (90.0°F)</td>
<td>0.1°C (0.2°F)</td>
</tr>
<tr>
<td>69</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>SEL1</td>
<td>Select 1st parameter for home page</td>
<td>0</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>71</td>
<td>SEL2</td>
<td>Select 2nd parameter for home page</td>
<td>Same as SEL1</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>72</td>
<td>SEL3</td>
<td>Select 3rd parameter for home page</td>
<td>Same as SEL1</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>73</td>
<td>SEL4</td>
<td>Select 4th parameter for home page</td>
<td>Same as SEL1</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>74</td>
<td>SEL5</td>
<td>Select 5th parameter for home page</td>
<td>Same as SEL1</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>75</td>
<td>SEL6</td>
<td>Select 6th parameter for home page</td>
<td>Same as SEL1</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>76</td>
<td>SEL7</td>
<td>Select 7th parameter for home page</td>
<td>Same as SEL1</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>77</td>
<td>SEL8</td>
<td>Select 8th parameter for home page</td>
<td>Same as SEL1</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>78</td>
<td>CODE E</td>
<td>Security code for parameter protection</td>
<td>Low 0</td>
<td>High: 9999</td>
<td>1000 High home page unprotected</td>
</tr>
<tr>
<td>79</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>STAR SBR4</td>
<td>Set point value at start of each profile</td>
<td>0</td>
<td>Current process value PV</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>END E</td>
<td>Set point value at end of each profile</td>
<td>0</td>
<td>Final set point value for each program</td>
<td>0</td>
</tr>
<tr>
<td>82</td>
<td>DLAY dLASY</td>
<td>Delay time (hours/minutes) between profile rotation and profile start</td>
<td>Low 0.00</td>
<td>High: 99.99</td>
<td>0</td>
</tr>
<tr>
<td>83</td>
<td>PFR PFR</td>
<td>Power fail recovery</td>
<td>0 c o n E: Continue profile from the last set point value</td>
<td>1 PV: Start to run from PV</td>
<td>2 SP: Static mode, SP1</td>
</tr>
<tr>
<td>84</td>
<td>HBC HBC</td>
<td>Holdback wait time</td>
<td>Low 0.00</td>
<td>High: 99.99 (hour/minute)</td>
<td>0.00=∞</td>
</tr>
<tr>
<td>85</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>PROF PROF</td>
<td>Profile number selected for view</td>
<td>Low 1</td>
<td>High: 9</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>HBRD HBRD</td>
<td>Holdback band</td>
<td>Low 1</td>
<td>High: 55.0°C (999°F)</td>
<td>—</td>
</tr>
<tr>
<td>88</td>
<td>STSP STSP</td>
<td>Start set point value</td>
<td>Low 0</td>
<td>SPLO: High: SPHI</td>
<td>—</td>
</tr>
<tr>
<td>89</td>
<td>RMPU rRMPU</td>
<td>Unit for ramp segment</td>
<td>0 HHA:: Hours, Minutes</td>
<td>1 s:: Minutes, Seconds</td>
<td>2 J:: units per minute</td>
</tr>
<tr>
<td>90</td>
<td>DLU DLUL</td>
<td>Unit for dwell segment</td>
<td>0 HHA:: Hours, Minutes</td>
<td>1 s:: Minutes, Seconds</td>
<td>—</td>
</tr>
<tr>
<td>91</td>
<td>GNO GNO</td>
<td>Segment number</td>
<td>Low 0</td>
<td>High: 15(PROF=1–4), 31(PROF=5–7), 63(PROF=8,9)</td>
<td>—</td>
</tr>
<tr>
<td>92</td>
<td>SOTY SOTY</td>
<td>Segment type for the selected segment number</td>
<td>0 rRMP: Ramp</td>
<td>1 dL: Dwell</td>
<td>2 J: Jump</td>
</tr>
<tr>
<td>93</td>
<td>TGS TGS</td>
<td>Target set point for ramp segment</td>
<td>Low 0</td>
<td>SPLO: High: SPHI</td>
<td>—</td>
</tr>
<tr>
<td>94</td>
<td>RTRU RTRU</td>
<td>Time duration or ramp rate for ramp segment</td>
<td>Low 0</td>
<td>High: 9999</td>
<td>—</td>
</tr>
<tr>
<td>95</td>
<td>P2EY P2EY</td>
<td>States assignment of PID selection and event outputs for ramp and dwell segment.</td>
<td>Four-bit binary number (0=inactive, 1=active)</td>
<td>—</td>
<td>R/W</td>
</tr>
<tr>
<td>96</td>
<td>HBTY HBTY</td>
<td>Holdback type</td>
<td>0 oFF: Holdback disabled</td>
<td>1 L: Deviation low holdback</td>
<td>2 H: Deviation high holdback</td>
</tr>
<tr>
<td>97</td>
<td>DLIT DLITL</td>
<td>Duration time for dwell segment.</td>
<td>Low 0</td>
<td>High: 99.99</td>
<td>—</td>
</tr>
<tr>
<td>98</td>
<td>SEG SEG</td>
<td>Target segment number for the jump segment</td>
<td>Low 0</td>
<td>High: 15(PROF=1–4), 31(PROF=5–7), 63(PROF=8,9)</td>
<td>—</td>
</tr>
<tr>
<td>99</td>
<td>CYCL CYCL</td>
<td>Repeat number of cycles for the jump and end segment</td>
<td>Low 1</td>
<td>High: 9999</td>
<td>10000 = ∞</td>
</tr>
<tr>
<td>100</td>
<td>FSP FSP</td>
<td>Final set point for the end segment</td>
<td>Low</td>
<td>SPLO: High: SPHI</td>
<td>—</td>
</tr>
<tr>
<td>101</td>
<td>OFSTL OFSTL</td>
<td>Offset value for low point calibration</td>
<td>Low: -999</td>
<td>high: 9999</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>OFSTH OFSTH</td>
<td>Offset value for high point calibration</td>
<td>Low: -999</td>
<td>high: 9999</td>
<td>0</td>
</tr>
<tr>
<td>103</td>
<td>ADLO ADLO</td>
<td>mV calibration low coefficient</td>
<td>Low: -999</td>
<td>high: 9999</td>
<td>—</td>
</tr>
<tr>
<td>104</td>
<td>ADHI ADHI</td>
<td>mV calibration high coefficient</td>
<td>Low: -999</td>
<td>high: 9999</td>
<td>—</td>
</tr>
<tr>
<td>Register Address</td>
<td>Parameter Notation</td>
<td>Parameter Description</td>
<td>Range</td>
<td>Default Value</td>
<td>Data Type</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>---</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>105</td>
<td>RTDL</td>
<td>RTD calibration low coefficient</td>
<td>Low: -1999</td>
<td>High: 1999</td>
<td>R/W</td>
</tr>
<tr>
<td>106</td>
<td>RTDH</td>
<td>RTD calibration high coefficient</td>
<td>Low: -1999</td>
<td>High: 1999</td>
<td>R/W</td>
</tr>
<tr>
<td>107</td>
<td>CJLO</td>
<td>Cold junction calibration low coefficient</td>
<td>Low: -5.00</td>
<td>High: 40.00</td>
<td>R/W</td>
</tr>
<tr>
<td>108</td>
<td>CJHI</td>
<td>Cold junction calibration high coefficient</td>
<td>Low: -1999</td>
<td>High: 1999</td>
<td>R/W</td>
</tr>
<tr>
<td>109</td>
<td>DATE</td>
<td>Date code</td>
<td>Low: 0</td>
<td>High: 3719</td>
<td>R/W</td>
</tr>
<tr>
<td>110</td>
<td>SRNO</td>
<td>Serial number</td>
<td>Low: 0</td>
<td>High: 9999</td>
<td>R/W</td>
</tr>
<tr>
<td>111</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>BPI1</td>
<td>Bumpless transfer value of MV1</td>
<td>Low: 0</td>
<td>High: 100.00</td>
<td>R</td>
</tr>
<tr>
<td>113</td>
<td>BPI2</td>
<td>Bumpless transfer value of MV2</td>
<td>Low: 0</td>
<td>High: 100.00</td>
<td>R</td>
</tr>
<tr>
<td>114</td>
<td>CJCL</td>
<td>Sense voltage during cold junction calibration</td>
<td>Low: 0</td>
<td>High: 7552</td>
<td>R</td>
</tr>
<tr>
<td>115</td>
<td>CALO</td>
<td>Input signal value during low point calibration</td>
<td>Low: -32768</td>
<td>High: 32767</td>
<td>R</td>
</tr>
<tr>
<td>116</td>
<td>CAHI</td>
<td>Input signal value during high point calibration</td>
<td>Low: -32768</td>
<td>High: 32767</td>
<td>R</td>
</tr>
<tr>
<td>117</td>
<td>CAIN</td>
<td>Input sensor calibrated</td>
<td>Low: 0</td>
<td>High: 20</td>
<td>20 R</td>
</tr>
<tr>
<td>118</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>PV</td>
<td>Process value</td>
<td>Low: -32768</td>
<td>High: 32767</td>
<td>R</td>
</tr>
<tr>
<td>129</td>
<td>SV</td>
<td>Set point value for control</td>
<td>Low: SPLO</td>
<td>High: SPHI</td>
<td>R</td>
</tr>
<tr>
<td>130</td>
<td>MV1</td>
<td>Output 1 percentage value (Heating)</td>
<td>Low: 0.00</td>
<td>High: 100.00</td>
<td>*1</td>
</tr>
<tr>
<td>131</td>
<td>MV2</td>
<td>Output 2 percentage value (Cooling)</td>
<td>Low: 0.00</td>
<td>High: 100.00</td>
<td>*1</td>
</tr>
<tr>
<td>132</td>
<td>STAT</td>
<td>Mode and operation status word</td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>133</td>
<td>EORR</td>
<td>Error Code</td>
<td>Low: 0</td>
<td>High: 40</td>
<td>R</td>
</tr>
<tr>
<td>134</td>
<td>PFSG</td>
<td>Current profile and segment running</td>
<td>Low: 1.00</td>
<td>High: 9.63</td>
<td>R</td>
</tr>
<tr>
<td>135</td>
<td>TNSG</td>
<td>Total number of segments</td>
<td>Low: 1</td>
<td>High: 64</td>
<td>R</td>
</tr>
<tr>
<td>136</td>
<td>TTSG</td>
<td>Total time for segment running</td>
<td>Low: 0</td>
<td>High: 99.59</td>
<td>R</td>
</tr>
</tbody>
</table>

*1 Read only if in manual control mode.
Chapter 2 Installation

Dangerous voltages capable of causing death are sometimes present in this instrument. Before installation or beginning any troubleshooting procedures, the power to all equipment must be switched off and isolated. Units suspected of being faulty must be disconnected and removed to a properly equipped workshop for testing and repair. Component replacement and internal adjustments must be made by a qualified maintenance person only.

This instrument is protected throughout by double insulation to minimize the possibility of fire or shock hazards, do not expose this instrument to rain or excessive moisture.

Do not use this instrument in areas under hazardous conditions such as excessive shock, vibration, dirt, moisture, corrosive gases or oil. This control is not to be used in hazardous locations as defined in Articles 500 and 505 of the National Electrical Code. The ambient temperature of the area should not exceed the maximum rating specified in chapter 6.

Remove stains from this instrument using a soft, dry cloth. To avoid deformation or discoloration do not use harsh chemicals, volatile solvent such as thinner, or strong detergents to clean this instrument.

2–1 Unpacking
Upon receipt of the shipment, remove the unit from the carton and inspect the unit for shipping damage.

If there is any damage due to transit, report it and file a claim with the carrier. Write down the model number, part number, serial number, and date code for future reference when corresponding with Tempco. The serial number (S/N) is labeled on the box and the housing of the control. The date code is located on the internal components of the controller.

2–2 Mounting
Remove mounting clamps and insert the controller into the panel cutout. Reinstall the mounting clamps. Gently tighten screws in clamps (TEC-4500 only) until the controller front panel fits snugly in the cutout.

Figure 2.1 Mounting Dimensions
2–3 Wiring Precautions

- Before wiring, verify the correct model number and options on the label. Switch off the power while checking.
- Care must be taken to ensure that the maximum voltage rating specified on the label is not exceeded.
- It is recommended that the power for these units be protected by fuses or circuit breakers rated at the lowest value possible.
- All units should be installed inside a suitably grounded metal enclosure to prevent live parts from being accessible to human hands and metal tools.
- All wiring must conform to appropriate standards of good practice and local codes and regulations. Wiring must be suitable for the voltage, current, and temperature rating of the system.
- Beware not to over-tighten the terminal screws. The torque should not exceed 1 n-m (8.9 in-lb.)
- Unused control terminals should not be used as jumper points as they may be internally connected, causing damage to the unit.
- Verify that the ratings of the output devices and the inputs as specified in chapter 6 are not exceeded.
- Except for the thermocouple wiring, all wiring should be stranded copper with a maximum gauge of 18 awg.

NOTE: ASTM thermocouples (American) the red colored lead is always negative.
2–4 Power Wiring

The controller is designed to operate at 11–26 V AC/VDC or 90–250 V AC. Check that the installation voltage corresponds to the power rating indicated on the product label before connecting power to the controller. The controller power input should be equipped with a fuse and switch as shown below in figure 2.7.

Figure 2.6 Power Supply Connections

⚠️ This equipment is designed for installation in an enclosure which provides adequate protection against electric shock. The enclosure must be connected to earth ground. Local requirements regarding electrical installation should be rigidly observed. Consideration should be given to prevent unauthorized personnel from accessing the power terminals.

2–5 Sensor Input Wiring

Figure 2.7 Sensor Input Wiring

2–6 Control Output Wiring

Figure 2.8
Output 1 Relay (2A, 240V Max.) or Triac (1A, 240V Max.)(SSR) to Drive Load

Figure 2.9
Output 1 Relay or Triac (SSR) to Drive Contactor

Figure 2.10
Output 1 Pulsed Voltage to Drive SSR

Figure 2.11
Output 1 Linear Current

Figure 2.12
Output 1 Linear Voltage

Control Output Wiring, continued...
Control Output Wiring, continued…

Figure 2.13 Output 2 or Triac (SSR) to Drive Load

Figure 2.15 Output 2 Pulsed Voltage to Drive SSR

Figure 2.14 Output 2 Relay or Triac (SSR) to Drive Contactor

Figure 2.16 Output 2 Linear Current

Figure 2.17 Output 2 Linear Voltage
2–7 Alarm Wiring

Figure 2.18 Alarm Output to Drive Load

2–8 Event Input Wiring

Figure 2.20 Event Input Wiring

2–9 Retransmission Output Wiring

Figure 2.21 Retransmission Wiring
If you use a conventional 9-pin RS-232 cable instead of TEC 99014, the cable must be modified according to the following circuit diagram.

Figure 2.22 RS-485 Wiring

Max. 247 units can be linked

Terminator Resistor 220 ohms / 0.5W

Figure 2.23 RS-232 Wiring

If you use a conventional 9-pin RS-232 cable instead of TEC 99014, the cable must be modified according to the following circuit diagram.

Figure 2.24 Configuration of RS-232 Cable
Chapter 3 Programming

The parameters stored in Home page can be obtained by pressing the scroll key \[\text{ } \]. The parameters stored in the Configuration page are obtained by pressing the page key \[\text{ } \] 2 times to show \(\text{Prof} \). Press and hold the page key \[\text{ } \] for 5 sec and release. The display should then read \(\text{Conf} \)-the Configuration page, then press the scroll key \[\text{ } \] to get to the desired configuration parameter. The upper display indicates the parameter symbol, and the lower display indicates the selected value of the parameter.

3–1 Lockout
There are two parameters which specify the data security function. These are PASS (password) and CODE (security code).

<table>
<thead>
<tr>
<th>Value of CODE</th>
<th>Value of PASS</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Any value</td>
<td>All parameters are changeable</td>
</tr>
<tr>
<td>1000</td>
<td>=1000</td>
<td>All parameters are changeable</td>
</tr>
<tr>
<td></td>
<td>(\neq 1000)</td>
<td>Only Home page parameters are changeable</td>
</tr>
<tr>
<td>Others</td>
<td>=CODE</td>
<td>All parameters are changeable</td>
</tr>
<tr>
<td></td>
<td>(\neq \text{CODE})</td>
<td>All parameters are not changeable</td>
</tr>
</tbody>
</table>

Table 3.1 Password Operation

3–2 Signal Input
INPT: Selects the sensor type or signal type for signal input.

- Range: (thermocouple) Type J, K, T, E, B, R, S, N, L, C, P
 (RTD) PT.DN, PT.JS
 (Linear) 4–20 mA, 0–20 mA, 0–60 mA, 0–1V, 0–5V, 1–5V, 0–10V

UNIT: Selects the process unit

- Range: \(^\circ \text{C}, ^\circ \text{F}, \text{PU} \) (process unit). If the unit is neither \(^\circ \text{C} \) nor \(^\circ \text{F} \), then select PU.

DP: Selects the resolution of process value.

- Range: (For T/C and RTD) NO.DP, 1-DP
 (For linear) NO.DP, 1-DP, 2-DP, 3-DP

INLO: Selects the low scale value for the linear type input.

INHI: Selects the high scale value for the linear type input.

How to use the conversion curve for linear type process values, INLO and INHI;

If 4–20mA is selected for INPT, SL specifies the input signal low (i.e., 4mA), SH specifies the input signal high (i.e., 20mA), S specifies the current input signal value, and the conversion curve of the process value is shown as follows:

![Figure 3.1 Conversion Curve for Linear Type Process Value](image)

Formula: \(\text{PV} = \text{INLO} + (\text{INHI-INLO}) \frac{S - \text{SL}}{\text{SH} - \text{SL}} \)

Example: A 4–20 mA current loop pressure transducer with range 0–15 kg/cm² is connected to input, then perform the following setup:

- INPT = 4-20
- INLO = 0.00
- INHI = 15.00
- DP = 2-DP

Of course, you may select other value for DP to alter the resolution.
3–3 Event Input

The Event input accepts a digital type signal. The types of signal: (1) relay or switch contacts, (2) open collector pull low and (3) TTL logic level, can be used to switch the event input. One of eight functions can be chosen by using $E_1 F_n$ (EIFN) contained in configuration page.

0 NONE : No event input function

1 RUN: Applicable when unit is in static mode or Off mode
 Requires only momentary type input
 When the event input is closed: the unit will enter run mode

2 HOLD: Applicable when unit is running
 Event input closed: Hold the profile
 Event input opened: Continue the profile

3 ABOT: Applies when unit is in run mode
 Requires only momentary input
 Event input closed: Unit will abort the current running profile and enter static mode.

4 MAN: Applies when unit is in static mode or run mode
 Event input close: Outputs perform bumpless transfer into manual mode
 Event input open: Unit will perform normal PID operation

5 FTRA: Applies when unit is in static mode or run mode
 Event input close: Perform failure transfer function
 Event input open: Unit will perform normal PID operation

6 OFF: Applies when unit is in static mode or run mode
 Event input close: All outputs/alarm turn off, profile stops running
 Event input open: If running, profile resumes where it was put into off condition, outputs/alarms active again as per configuration

7 PASS: Applies when unit is run mode
 Requires only momentary input to pass to next segment
 Event input close: Profile will move ahead by 1 segment

8 PID2: Applies when unit is in static mode or run mode
 If chosen, and the event input is closed, the PB2, TI2 and TD2 will replace PB1, TI1 and TD1 for control.

9 RunHo: The RunHo parameter performs following function when the unit is in any mode:
 Event input close: Performs run mode.
 Event input open: Performs hold mode.
3–4 Control Outputs

There are four kinds of control modes that can be configured as shown in table 3.1.

<table>
<thead>
<tr>
<th>Control Modes</th>
<th>OUT1</th>
<th>OUT2</th>
<th>O1HY</th>
<th>A1HY</th>
<th>CPB</th>
<th>DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat only</td>
<td>H_on_F</td>
<td>H_LPC</td>
<td>H_Lin</td>
<td>X</td>
<td>✽</td>
<td>X</td>
</tr>
<tr>
<td>Cool only</td>
<td>C_on_F</td>
<td>C_LPC</td>
<td>C_Lin</td>
<td>X</td>
<td>✽</td>
<td>X</td>
</tr>
<tr>
<td>Heat: ON-OFF</td>
<td>H_on_F</td>
<td>ALnF</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cool: ON-OFF</td>
<td>H_LPC</td>
<td>H_Lin</td>
<td>ALnF</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Heat: PID</td>
<td>H_LPC</td>
<td>H_Lin</td>
<td>CLPC</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Cool: PID</td>
<td>H_LPC</td>
<td>H_Lin</td>
<td>CLPC</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
</tbody>
</table>

- ✽: Required if ON-OFF control is configured
- X: Does not apply
- O: Adjust to meet process requirements

OUT1: Output 1 Type
OUT2: Output 2 Type
O1HY: Output 1 Hysteresis
A1HY: Alarm 1 Hysteresis
CPB: Cooling Proportional Band
DB: Heating Cooling Dead Band
Control Outputs, continued…

Heat Only ON-OFF Control: Select $H_{on\ F}$ for OUT1. O1HY is used to adjust dead band for ON-OFF control. The heat only on-off control function is shown in the following diagram:

![Heat Only ON-OFF Control](image)

Figure 3.2 Heat Only ON-OFF Control

The ON-OFF control may introduce excessive process oscillation even if hysteresis is minimized. If ON-OFF control is set, PB1, T1, TD, PB2, T12, TD2, CYC1, CYC2, OFST, CPB and DB will be hidden and have no function in the system. The auto-tuning and bumpless transfer functions will be disabled as well.

Heat only P (or PD) control: Select H_{TPC} or H_{LIN} for OUT1 and set T11 and T12 to 0. OFST is used to adjust the control offset (manual reset). O1HY is hidden if PB is not equal to 0.

OFST function: OFST is measured in % with a range of 0–100.0%.

In a steady state (i.e. process has stabilized at a temperature), if the process value is lower than the set point by a constant value (we’ll say 5°C) while the PB setting is set for 20°C, we can say the temperature is lower than the setpoint by 25% of the PB setting. This can be corrected by increasing the OFST setting to 25%. After adjusting the OFST value, the process value will eventually coincide with set point.

Note that using the P control (TI set to 0), disables auto-tuning. Refer to Section 3-11 “manual tuning” for the adjustment of P and PD. Manual reset (adjust OFST) is sometimes not practical since the load may change from time to time and OFST may need to be adjusted repeatedly. PID control can avoid this situation.

Heat only PID control: Set H_{TPC} or H_{LIN} for OUT1 and a non-zero value for PB and TI. Perform auto-tuning for the new process, or set PB1, T11, and TD1 with historical values. If the control result is still unsatisfactory, use manual tuning to improve control. See section 3-11 for manual tuning. The unit contains a very advanced PID and Fuzzy Logic algorithm to create a small overshoot and quick response to the process if it is properly tuned.

Cool only control: ON-OFF control, P (PD) control, and PID control can be used for cool only control for output 1. Set OUT1 to $C_{on\ F}$, C_{TPC}, or C_{LIN}. The other functions for cool only ON-OFF control, cool only P (PD) control, and cool only PID control are the same as for heat only control except that the output variable (and action) for cool control is inverse to heat control.

Heat – Cool control: Three types of heat-cool combinations are available as shown in Table 3.1. Case 1 through 3 in Figure 3.3 show the heat PID and cool PID operation. Case 4 shows the heat PID and cool ON-OFF operation.

![Heat-Cool Control](image)

Figure 3.3 Heat-Cool Control
CPB (Cooling Proportional Band) Programming: The cooling proportional band is measured by % of PB with a range of 50-300%. Initially set CPB to 100% and examine the cooling effect. If the cooling action should be enhanced, then decrease CPB, if the cooling action is too strong, then increase CPB. The value of CPB is related to PB and its value remains unchanged throughout the auto-tuning procedures.

Adjustment of CPB is related to the cooling medium used. If air is used as the cooling medium, initially set CPB to 100%, then adjust as necessary. If oil is used as the cooling medium, initially set CPB to 125%, then adjust as necessary. If water is used as the cooling medium, initially set CPB to 250%, then adjust as necessary.

DB (Heating-Cooling Dead Band) Programming: The adjustment of DB is dependent on the system requirements. If a more positive value of DB (greater dead band) is used, an unwanted cooling action can be avoided but an excessive overshoot over the set point can occur. If a more negative value of DB (greater overlap) is used, an excessive overshoot over the set point can be minimized, but an unwanted cooling action can occur. The DB is adjustable in the range of -36.0% to 36.0% of PB. A negative DB value shows an overlap area over which both outputs are active. A positive DB value shows a dead band area over which neither output is active.

NOTE: ON-OFF control may result in excessive overshoot and undershoot problems in the process. P (or PD) control will result in a deviation of process value from the set point. It is recommended to use PID control for heat-cool control to produce a stable and zero offset process value.

Other setup required: CYC1, CYC2, O1FT and O2FT

CYC1 is adjusted according to the type of output device. Generally, use 0.5~2 seconds for CYC1 if SSRD or SSR is used for O1TY; 10~20 seconds if relay is used for O1TY; and CYC1 is ignored if a linear output is used. Similar conditions are applied for CYC2 selection.

See section 3-9 for O1FT and O2FT adjustment.

OFST function: OFST is measured in % with a range of 0–100.0%. In a steady state (i.e., process has been stabilized), if the process value is lower than the set point, a definite value say 5°C while 20°C is used for PB, that is lower then setpoint by 25%, then increase OFST 25%, and vice-versa. After adjusting OFST value, the process value will be varied and eventually coincide with set point. Using the P control (TI set to 0), disables auto-tuning.

Refer to section 3-11 “manual tuning” for the adjustment of P and PD. Manual reset (adjust OFST) is not practical because the load may change from time to time and OFST may need to be adjusted repeatedly. The PID control can avoid this situation.

Heat only PID control: Set H.TPC or H.L IN for OUT1 and a non-zero value for PB and TI. Perform auto-tuning for the new process, or set PB1, TI1, and TD1 with historical values. If the control result is still unsatisfactory, use manual tuning to improve control. See section 3-11 for manual tuning. The unit contains a very advanced PID and Fuzzy Logic algorithm to create a small overshoot and quick response to the process if it is properly tuned.
3–5 Alarms

The unit can be configured with up to three alarm outputs using OUT2, OUT3, and OUT4. There are 9 types of alarm functions that can be selected, and 4 kinds of alarm modes are available for each alarm function.

\(PV.HI \): A process high alarm is independent of the set point. When the process value is higher than the alarm value, a process high alarm occurs, the alarm is off when the process value is lower than alarm value (minus) alarm hysteresis. Fig. 3.4 shows the process high alarm operation.

\(PV.LO \): A process low alarm is independent of the set point. When the process value is lower than the alarm value, a process low alarm occurs. The alarm is off when the process value is higher than alarm value + alarm hysteresis. Fig. 3.5 shows the process low alarm operation.

\(DE.HI \): A deviation high alarm alerts the operator when the process deviates too high from the set point value. When the process value is higher than SV+ASP1, a deviation high alarm occurs. The alarm is off when the process is lower than SV+ASP1-A1HY. Figure 3.6 shows the deviation high alarm operation.

\(DE.LO \): A deviation low alarm alerts the operator when the process deviates too low from the set point value. When the process is lower than SV+ASP1 (ASP1 is negative value), a deviation low alarm occurs. The alarm is off when the process is higher than SV+ASP1+A1HY. Figure 3.7 shows the deviation low alarm operation.

\(DB.HL \): A deviation band high/low alarm presets two trigger levels relative to set point value. The two trigger levels are SV+ASP1 and SV-ASP1 for alarm. When the process value is higher than SV+ASP1 or lower than SV-ASP1, a deviation band alarm occurs. When the process value is within the trigger levels SV+ASP1-A1HY and SV-ASP1+A1HY (where ASP1 must be positive value), the alarm is in a normally open state. Figure 3.8 shows the deviation band alarm 1 operation.

The above description is based on alarm 1 which is selected for output 2. The operations of alarm 2 and alarm 3 are same as alarm1. In the above description, SV denotes the current set point value for control which is different from SP1 as the profile mode is performed.

End.P: An end of profile alarm is energized when a running profile is complete.

Hold: A hold mode alarm is energized whenever a profile is in “Hold” mode.

StAt: A static mode alarm is energized whenever the controller is in “Static” mode.

The alarm modes (A1MD, A2MD and A3MD) are set by using a three bit of binary number.

<table>
<thead>
<tr>
<th>alarm mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom</td>
<td>A direct acting normal alarm output is off in the non-alarm condition and on in an alarm condition. The output state is inverted if a reverse alarm output is selected for OUT2, OUT3 or OUT4.</td>
</tr>
<tr>
<td>Latch</td>
<td>A direct acting latching alarm output is on in an alarm condition and it will remain unchanged even if the alarm condition is cleared. The output state is inverted if a reverse alarm output is selected for OUT2, OUT3 or OUT4. The latching alarm output is off when both ▲ and ▼ keys are pressed, once the alarm condition is removed.</td>
</tr>
<tr>
<td>Hold</td>
<td>A direct acting holding alarm output is off even if an alarm condition may occur on power up. This will prevail until the alarm condition returns to the "Inactive" condition, thereafter the alarm will operate normally. The output state is inverted if a reverse alarm output is selected for OUT2, OUT3 or OUT4.</td>
</tr>
<tr>
<td>LatchHold</td>
<td>A direct acting latching and holding alarm performs both latching and holding alarm functions. The output state is inverted if a reverse alarm output is selected for OUT2, OUT3 or OUT4.</td>
</tr>
</tbody>
</table>

Table 3.3 Alarm mode description
3–6 Configure Home Page

Conventional controllers are designed with a fixed parameter scrolling. This unit has the flexibility for you to select parameters which are most useful to you, and put these parameters in the home menu. Hence, you can have a custom home menu.

Up to eight parameters can be selected for the home menu. These are: SEL1–SEL8 in the configuration menu. There are 19 parameters that can be selected for SEL1–SEL8, these are: INPT, UNIT, DP, PB1, TI1, TD1, PB2, TI2, TD2, OFST, O1HY, CYC1, CYC2, CPB, DB, A1HY, A2HY, A3HY, and DLAY.

When using the up-down key to select the parameters, you may not obtain all of the above parameters. The number of visible parameters is dependent on the configuration of the controllers. The hidden parameters for a specific application are also hidden from the SEL1–SEL8 parameters.

3–7 User Calibration

Each unit is calibrated in the factory before shipment. You still can modify the calibration conditions after shipment.

Purpose of user Calibration

The basic calibration of the unit is highly stable and set for life. User calibration allows you to offset the permanent factory calibration to either:

1. Calibrate the unit to meet your reference standard.
2. Match the calibration of the unit to that of a particular transducer or sensor input.
3. Calibrate the unit to suit the characteristics of a particular installation.
4. Remove long term drift in the factory set calibration.

There are two parameters: offset low value OFSTL and offset high value OFSTH which are adjusted to correct the error of process value.

See section 1-5 for key operation flowchart, press key until low calibration page is obtained. Send the low signal to the input of unit, then press key. If the process value (the upper display) is different from the input signal, then you can use and keys to change the OFSTL value (the lower display) until the process value is equal to the value you want. Then press and hold key for 5 seconds. The low point calibration is finished. Apply the same procedure for the high point calibration.

![Figure 3.9 Two point user calibration](image)

The two points construct a straight line. For the purpose of accuracy it is best to calibrate with the two points as far apart as possible. After user calibration is complete, the input type will be stored in the memory. If the input type is changed, a calibration error will occur and an error code is displayed.
3–8 Digital Filter
In certain applications, the process value is too unstable to be read, possibly due to electrical noise. A programmable low-pass filter incorporated in the controller is used to improve this. It is a first-order filter with the time constant specified by the FILT parameter. The default value of FILT is set at 0.5 seconds before shipping. Adjust FILT to change the time constant from 0 to 60 seconds. 0 seconds means no filter is applied to the input signal. The filter is characterized by the following diagram:

Note
The filter is available only for PV, and is performed for the displayed value only. The controller is designed to use an unfiltered signal for control even if the filter is applied. A lagged (filtered) signal, if used for control, may produce an unstable process.

![Figure 3.10 Filter Characteristics](image)

3–9 Failure Transfer
The controller will enter failure mode if one of the following conditions occurs:

1. **SBER** occurs due to input sensor break, or input current is below 1mA if 4–20mA is selected, or input voltage is below 0.25V if 1–5V is selected.
2. **ADER** occurs due to the A-D converter of the controller failing.

Output 1 and output 2 will perform the failure transfer function as the controller enters failure mode.

Output 1 failure transfer, if activated, will perform:

1. If output 1 is configured as proportional control (i.e. HTPC, CTPC, HLIN, or CLIN selected for OUT1), and BPLS is selected for O1FT, then output 1 will perform bumpless transfer. Thereafter, the previous average value of MV1 will be used for controlling output 1.
2. If output 1 is configured as proportional control (PB≠ 0), and a value of 0 to 100.0% is set for O1FT, then output 1 will perform failure transfer. Thereafter, the value of O1FT will be used for controlling output 1.
3. If output 1 is configured as ON-OFF control (i.e. HONF or CONF is selected for OUT1), then output 1 will transfer to off state if OFF is set for O1FT and transfer to on state if ON is set for O1FT.

Output 2 failure transfer, if activated, will perform:

1. If OUT2 is configured as CTPC or CLIN, and BPLS is selected for O2FT, then output 2 will perform a bumpless transfer. Thereafter, the previous average value of MV2 will be used for controlling output 2.
2. If OUT2 is configured as CTPC or CLIN, and a value of 0 to 100.0% is set for O2FT, then output 2 will perform failure transfer. Thereafter, the value of O1FT will be used for controlling output 2.
3. If OUT2 is configured as alarm function, and OFF is set for O2FT, then output 2 will transfer to off state. Otherwise, output 2 will transfer to on state if ON is set for O2FT.

OUT3 and OUT4 failure transfer is activated if the controller enters failure mode. Thereafter, the alarm will transfer to the ON or OFF state which is determined by the set value of O3FT or O4FT.
3–10 Auto-tuning

The auto-tuning process can be performed at any set point. The process will oscillate around the set point during the tuning process. Set the set point at a lower value if overshooting beyond the normal process value is likely to cause damage. Overshooting is common during auto-tuning.

Auto-tuning is applied in cases of:
• Initial setup for a new process
• The set point or load has changed substantially from the previous auto-tuning value
• The control result is unsatisfactory

Operation:
1. Set the correct values for the setup menu of the unit, but do not set a zero value for PB or TI, or auto-tuning will be disabled.
2. Set EIFN = PID2 if a second set of PID parameters is required to be tuned.
3. Set the set point to a normal operating value, or a lower value if overshooting beyond the normal process value is likely to cause damage. Enter the A-T mode from the “mode” menu. Select “A-T”, then press and hold the “E” button until the upper display begins to flash.
4. If the system needs to use a second set of PID values, then after the first auto-tuning is complete, close the event input of the unit and repeat step 3 for the second set of PID values. Auto-tuning mode is disabled as soon as either failure mode or manual control mode is entered.

Procedures:
Auto-tuning can be applied either as the process is warming up (cold start), or when the process is in a steady state (warm start). After the auto-tuning procedures are completed, the AT indicator will cease to flash and the unit will revert to PID control using its new PID values. The PID values obtained are stored in the nonvolatile memory.

Auto-Tuning Error
If auto-tuning fails an ALTER message will appear on the upper display in the following cases:
• If PB exceeds 9000 PU, 900.0°F or 500.0°C
• if TI exceeds 3600 seconds
• if the set point is changed during the auto-tuning procedure.

Solutions to AUTO
1. Try auto-tuning once again.
2. Don’t change the set point value during the auto-tuning procedure.
3. Don’t set a zero value for PB and TI.
4. Use manual tuning instead of auto-tuning (see Section 3-11).
5. Touch RESET key to reset message.

3–11 Manual Tuning

In certain applications, auto-tuning may be inadequate for the control requirements. You can try manual tuning for these applications.

If the control performance using auto-tuning is still unsatisfactory, the following rules can be applied for further adjustment of PID values:

<table>
<thead>
<tr>
<th>ADJUSTMENT SEQUENCE</th>
<th>SYMPTOM</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Proportional Band (PB)</td>
<td>High overshoot or Oscillations</td>
<td>Decrease PB</td>
</tr>
<tr>
<td>(2) Integral Time (TI)</td>
<td>Instability or Oscillations</td>
<td>Decrease TI</td>
</tr>
<tr>
<td>(3) Derivative Time (TD)</td>
<td>Slow Response or Oscillations</td>
<td>Decrease TD</td>
</tr>
</tbody>
</table>

Table 3.4 PID Adjustment Guide

Figure 3.11 shows the effects of PID adjustment on process response.
3–12 Manual Mode

Operation
To enable manual control, the password PASS should be set with a value equal to CODE (except CODE=0).

Press [E] key to get MODE (mode select), then use the [▲] and [▼] keys to obtain MAN (Man). Press [E] for 5 seconds, the controller is now in manual mode. The upper display will begin to flash and the lower display will show \(H _ _ _ _ \) or \(C _ _ _ _ \). \(H _ _ _ _ \) indicates control percentage value for heating output and \(C _ _ _ _ \) indicates control percentage value for cooling output. Now you can use the up and down keys to adjust the percentage values for the heating or cooling output in relation to \(CYC \).

The controller performs open loop control as long as it stays in manual control mode.

Exit Manual Control
Pressing the [▲] and [▼] keys together will cause the controller to revert to its normal display mode.

3–13 Data Communication
The controllers support Modbus RTU protocol for data communication. Other protocols are not available for this series.

Two types of interfaces are available for data communication. These are RS-485 and RS-232 interface. Since RS-485 uses a differential architecture to drive and sense signals instead of a single-ended architecture like the one used for RS-232, RS-485 is less sensitive to noise and is more suitable for communication over a longer distance. RS-485 can communicate without error over a 1km distance while RS-232 is not recommended for a distance of over 20 meters.

Using a PC for data communication is the most economical method. The signal is transmitted and received through the PC communication port (generally RS-232). Since a standard PC can’t support an RS-485 port, a network adapter (such as TEC99001) must be used to convert RS-485 to RS-232 if a PC is used. Up to 247 RS-485 units can be connected to one RS-232 port; therefore a PC with four comm ports can communicate with 988 units.

Setup
Enter the configuration menu. Select COMM for OUT5. Set unequal addresses for any units that are connected to the same port. Set the baud rate (BAUD), parity bit (PARI), and stop bit (STOP) so that these values are accordant with PC setup conditions.

If you use a conventional 9-pin RS-232 cable instead of TEC99014, the cable should be modified for proper operation of RS-232 communication according to section 2-10.

Refer to chapter 7 for a complete technical description of the Modbus Communications Protocol.

3–14 Process Variable (PV) Retransmission
The controller can output (retransmit) the process value or setpoint value via its retransmission terminals RE+ and RE- provided that the retransmission option is ordered. To accomplish this, you can select \(rE_PV \) (REPV) or \(rE_SP \) (RESP) for OUT4 (TEC-4500 only) or OUT5.

The following parameters should be configured for retransmission:
- OP4L : Low limit value for output 4
- OP4H : High limit value for output 4
- REL4 : Retransmission low scale value for output 4
- REH4 : Retransmission high scale value for output 4
- OP5L : Low limit value for output 5
- OP5H : High limit value for output 5
- REL5 : Retransmission low scale value for output 5
- REH5 : Retransmission high scale value for output 5

Example:
If you want to output 4 mA for PV at 0°C and 20mA for PV at 1000°C via output 5, then you should set the following parameters:

- \(OUT5 = rE_PV \)
- OP5L = 20.0 (%), since 20% of a 0-20mA output module equipped will output 4 mA (20% of 20mA span).
- OP5H = 100.0 (%)
- REL5 = 0°C
- REH5 = 1000°C
3–15 Output Scaling
Output scaling can be applied during cases of linear output (case 1 in Fig. 3.12) and retransmission (case 2 in Fig. 3.12). The Out.L or Out.H may be any % of the total span according to the output module installed.
Linear output modules are 0-20mA for current or 0-10VDC for voltage.

Figure 3.12 Output Scaling Function
4–1 What is a set point profile?
Many applications need to vary temperature or process value with time. Such applications need a controller which varies a set point as a function of time. The profiling controllers TEC-4500 and TEC-9500 can do this. The set point is varied by using a set point profile. The profile is stored as a series of "ramp" and "dwell" segments, as shown below.

![Set point profile](image)

In each segment you can define the state of up to 3 event outputs which can drive either relay, logic or triac outputs, depending on the modules installed. A profile is executed either once, repeated a set number of times, or repeated continuously. If repeated a set number of times, then the number of cycles must be specified as part of the profile.

There are four types of segments:

<table>
<thead>
<tr>
<th>Segment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp</td>
<td>The set point ramps linearly, from its current value to a new value, either at a rate (ramp rate), or in a set time ramp time. You must specify the ramp rate or the ramp time and the target set point when creating or modifying a profile.</td>
</tr>
<tr>
<td>Dwell</td>
<td>The set point remains constant for a specified period.</td>
</tr>
<tr>
<td>Jump</td>
<td>It is often necessary to jump backward and run the loop a set number of cycles.</td>
</tr>
<tr>
<td>End</td>
<td>The profile either ends in this segment or repeats a set number of cycles. The profile stops after the repeated cycles are finished.</td>
</tr>
</tbody>
</table>

Table 4.1 Segment Types

4–2 Segment Connection
Four kinds of combination are allowable for connecting segments, these are

- **Ramp-Ramp:**
- **Ramp-Dwell:**
- **Dwell-Ramp:**
- **Dwell-Dwell:**
4-3 Profile Modes

The profile has eight operating modes:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>In run mode, the controller varies the set point according to the stored profile values.</td>
<td>RUN light on</td>
</tr>
<tr>
<td>Hold</td>
<td>In hold mode, the profile is frozen at its current point. In this state you can make temporary changes to any profile parameter (for example, a target set point, a dwell time or the time remaining in the current segment). Such changes will only remain effective until the profile is reset and run again, when they will be overwritten by the stored profile values.</td>
<td>HLD light on</td>
</tr>
<tr>
<td>Holdback</td>
<td>Holdback indicates that the process value is lagging the set point by more than a preset amount (holdback band HBBD) and that the profile is in HOLD, waiting for the process to catch up.</td>
<td>HLD light flashes</td>
</tr>
<tr>
<td>Static</td>
<td>In static mode, the profiler is inactive and the controller acts as a standard controller, with the set point determined by the value set in the lower display.</td>
<td>Both RUN and HLD light are off</td>
</tr>
<tr>
<td>A-T</td>
<td>In automatic tuning mode, the profiler is inactive and the controller executes automatic tuning function at its static mode set point.</td>
<td>Both RUN and HLD light are off. Upper display flashes.</td>
</tr>
<tr>
<td>MAN</td>
<td>In manual mode, the profiler is inactive and the heating and cooling output values can be adjusted at the lower display by up-down keys.</td>
<td>Both RUN and HLD light are off. Upper display shows H- - or E- - .</td>
</tr>
<tr>
<td>OFF</td>
<td>In off mode, the profiler is inactive and all the outputs are disabled. That is all the control outputs, alarms and event outputs are off.</td>
<td>Both RUN and HLD light are off. Upper display shows OFF and flashes.</td>
</tr>
<tr>
<td>End</td>
<td>The profile is complete.</td>
<td>Both RUN and HLD lights flash.</td>
</tr>
</tbody>
</table>

Table 4.2 Profiler Mode

4-4 Running, Holding and Aborting a Profile

Press and release page key [E] until mode page is obtained. The upper display will show \(\text{modE} \). Press the up/down key until \(\text{run} \) is obtained on the lower display. Press the [E] page key for 5 seconds and release. The “Run” light will illuminate as the controller enters RUN mode. If Hold is obtained, pressing the page key for 5 seconds will enter HOLD mode.

The operator may abort (i.e. terminate) the current profile by holding the [E] key for more than 5 seconds when the lower display shows \(\text{Stop} \). When the program is aborted, the profile is inactive and enters static mode. At the same time both the RUN light and HLD light turn off.

If the "RUN" and "HLD" LED's are blinking simultaneously, it indicates the end of the current profile. Reset the profile by pressing UP and DOWN keys together to take to Profile start segment PFSG=1.00. Select the profile and segment by using up/down arrows and pressing Enter Key. P1.00 indicates profile 1 and segment 00 is selected.

Please refer to Section 1-5 for key operation.
4–5 Viewing and Modifying profile progress

There are three parameters: PFSG, TIME, CYCL which indicate the status of profile progress. The operator can easily view these parameters: the current profile and segment number, the time remaining for the current segment, and the cycle remaining for the current profile on the home page.

When a profile is running, if it is necessary to jump to another segment, then it requires holding of the current profile. After going to hold mode, go to current segment PSEG by pressing button, then use "Up" and "Down" buttons to modify the segment and run the profile again.

When a profile is running, if it is necessary to change dwell time or ramp rate of the current segment, then it requires holding of current profile. Press button, twice to go to "EiñE", and then modify the value and run the profile again.

When profile is running, if it is necessary to modify the next segment data, no need to hold the current profile, modifications can be done directly from the profile configuration menu.

4–6 Start

The parameter "$kRr" in the configuration menu is used to specify the starting setpoint for the profile.

There are three values for the starting point, these are:

PV: Process value: starts profile at whatever the current temperature is

SP1: starts profile at whatever the static setpoint is set at

STSP: Uses the "STSP" value in the profile configuration as the starting setpoint

The normal method is to start from the process value, because this will produce a smooth and bumpless start to the process. However, if you want to guarantee the time period of the first segment, you should set SP1 or STSP for the start point.

4–7 Holdback

As the set point ramps up or down (or dwells), the measured value may lag behind or deviate from the set point by an undesirable amount. "Holdback" is available to freeze the profile at its current state should this occur. The action of Holdback is the same as a deviation alarm. It can be enabled or disabled.

Holdback has three parameters: HBT- holdback wait time, HBBD- holdback band and HBTY- holdback type. If the error from the set point exceeds the set holdback band (HBBD), then the holdback feature, if enabled, will automatically freeze the profile at its current point and flash the HLD light. At the same time, the holdback timer begins to count. When the value of holdback timer exceeds the value of holdback wait time HBT, the profile will no longer be frozen and the profile will continue. An error code HbEr will be displayed if the holdback timer finishes before the process value “catches up” to the setpoint. When the error comes within the holdback band (HBBD), the program will resume normal running. There are four different Holdback types. The choice of type is made by setting HBTY parameter when creating a profile, and may be one of the following:

- **OFF** – Disables Holdback - no action is taken.
- **Lo** – Deviation Low Holdback holds the profile timer if the process value deviates below the set point by more than the holdback band (HBBD).
- **Hi** – Deviation high holdback holds the profile timer if the process value deviates above the set point by more than the holdback band (HBBD).
- **Band** – Deviation Band Holdback is a combination of the two. It holds the profile timer if the process value deviates either above or below the set point by more than the holdback band (HBBD).

HBT is a global parameter which is common to all profiles.

HBBD is a parameter which applies to a specific profile.

HBTY is a parameter which applies to a segment in a specific profile.

![Holdback on dwell](image1)

![Holdback on positive ramp](image2)

![Holdback on negative ramp](image3)

Figure 4.2 Holdback operation
4–8 Power Failure

If power is lost and then restored while a profile is running, the behavior of the profile is determined by the setting of the parameter "PFR" (power fail recovery) in the profile configuration menu. This can have one of 4 settings - \texttt{cont}, \texttt{PV}, \texttt{SP1}, or \texttt{OFF}. If \texttt{cont} is selected, then when power is restored the profile continues from where it was interrupted when power was lost.

The parameters such as set point value (SV), time remaining (TIME), and cycle remaining (CYCL), will be restored to their power-down values. For an application that needs to bring the process value to the set point value as soon as possible, \texttt{cont} is the best choice. The two diagrams below illustrate the respective responses, Fig. 4.3 if power fails during a dwell segment and Fig. 4.4 if it fails during a ramp segment.

![Figure 4.3 Recovery from profile at dwell segment](image1)

![Figure 4.4 Recovery from profile at ramp segment](image2)

If \texttt{PV} is selected, then when power is restored the set point starts at the current process value, and then runs to the target set point of the active segment. This choice provides a smoother recovery. The two diagrams below illustrate the respective responses, Fig. 4.5 if power fails during a dwell segment and Fig. 4.6 if it fails during a ramp segment.

![Figure 4.5 Recovery from PV at dwell segment](image3)

![Figure 4.6 Recovery from PV at ramp segment](image4)

If \texttt{SP1} is selected, when power is restored the profile is disabled and enters static mode, and \texttt{SP1} is selected for control set point.

If \texttt{OFF} is selected, when power is restored the profile is disabled and the controller enters OFF mode. All control outputs as well as alarms and events are turned off.
4–9 Configuring the Profile

When first configuring a profile, you should check that the configuration conforms to your requirements. The following parameters are common to all profiles:

Global Data (Located in ConF menu)
- **STAR**: set point value at start of profile
- **END**: set point value at end of profile
- **DLAY**: Delay time before profile start
- **PFR**: Power fail recovery
- **HBT**: Holdback wait time

The following parameters are used for a specific profile:

Profile Data
- **PROF**: Profile number selected for view
- **HBBD**: Holdback band
- **STSP**: Start set point value
- **RMPU**: Unit for ramp segment
- **DLLU**: Unit for dwell segment

The following parameters apply to each segment in a specific profile:

Segment Data
- **SGNO**: Segment number
- **SGTY**: Segment type
- **TGSP**: Target set point
- **RTRR**: Ramp time or ramp rate
- **P2EV**: PID selection and event output states
- **HBTY**: Holdback type
- **DLLT**: Dwell time
- **SEG**: Target segment number for jump segment
- **CYCL**: Repeat number of cycle
- **FSP**: Final set point for the end segment
4–10 Viewing and Creating a Profile

Refer to section 1-5 for key operation. Press page key to obtain configuration page. After completing the configuration of all the parameters including those parameters which are common to all profiles, you can proceed to the profile page to create a profile. To create a specific profile you need to set the profile number at first, then set HBBD, STSP, RMPU, DLLU and SGNO for this profile.

The next parameter is segment type (SGTY). There are four different segment types, these are:

- **rAMP** – Ramp to a new set point at a set rate or in a set time
- **dLL** – Dwell for a set time
- **JUMP** – Jump to a specified segment in the same profile
- **End** – Make this segment the end of the profile

The parameters that follow SGTY (segment type) depend on the type of segment selected as shown in the table below. The function of each parameters follows the table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Segment type (SGTY) selected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 RAMP</td>
</tr>
<tr>
<td>TGSP</td>
<td>✔</td>
</tr>
<tr>
<td>RTRR</td>
<td>✔</td>
</tr>
<tr>
<td>P2EV</td>
<td>✔</td>
</tr>
<tr>
<td>HBTY</td>
<td>✔</td>
</tr>
<tr>
<td>DLLT</td>
<td>✔</td>
</tr>
<tr>
<td>SEG</td>
<td>✔</td>
</tr>
<tr>
<td>CYCL</td>
<td>✔</td>
</tr>
<tr>
<td>FSP</td>
<td>✔</td>
</tr>
</tbody>
</table>

Table 4.3 Parameters that follow Segment Type

Changing Event Input Function

A. Press and release “E” key twice until Prof appears on upper display
B. Press and release “E” for 5 sec, then release. ConF should appear on upper display
C. Press and release “Return” key (key on far left) 5 times until EiFn appears on Upper display
D. Use up/down arrows to select either desired event input function.
E. Press up/down arrows at same time to return to home screen.

Changing profile settings

A. Press and release “E” key twice until Prof appears on upper display
B. Press and release “Return” (key on far left) until the upper display reads SG0
 1. The first few options are global settings of the profile, i.e. starting set point, hold back band, etc. These pertain to all segments in the specific profile.
C. When SG0 appears on the upper display, use the up/down keys to select which segment you would like to edit.
D. When the desired segment is on the upper display, press and release the “Return” key to edit that segments parameters.
E. Parameter descriptions can be found in the instruction manual on pages 8 through 11.
F. When finished editing the profile, press up/down keys at same time to return to home page.
Suppose that you need a controller to control a process where the response of the profile must be the same as the figure shown below.

![Profile Curve Example](image_url)

In order to meet the response of the profile curve example, you can make a series of settings of parameters as follows:

Global Data
- ST = STSP
- END = OFF
- DLAY = 0
- PFR = PV
- HBTY = 1.00

Profile Data
- PROF = 1
- HBBD = 50
- STSP = 25.0
- RMPU = HH.MM
- DLLU = HH.MM

Segment Data

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment 0</td>
<td>SGNO = 0 SGTY = RAMP TGSP = 150.0 RTRR = 15 P2EV = 0000 HBTY = 1</td>
</tr>
<tr>
<td>Segment 0</td>
<td>SGNO = 4 SGTY = RAMP TGSP = 150.0 RTRR = 25 P2EV = 0001 HBTY = 2</td>
</tr>
<tr>
<td>Segment 1</td>
<td>SGNO = 1 SGTY = DLL TGSP = 50.0 RTRR = 15 P2EV = 0000 HBTY = 3 DLLT = 20</td>
</tr>
<tr>
<td>Segment 2</td>
<td>SGNO = 2 SGTY = DLL TGSP = 250.0 RTRR = 20 P2EV = 0000 HBTY = 1 DLLT = 24</td>
</tr>
<tr>
<td>Segment 3</td>
<td>SGNO = 3 SGTY = DLL TGSP = 100.0 RTRR = 30 P2EV = 0000 HBTY = 1 DLLT = 10</td>
</tr>
<tr>
<td>Segment 4</td>
<td>SGNO = 8 SGTY = DLL TGSP = 1010 RTRR = 30 P2EV = 0001 HBTY = 2 DLLT = 30</td>
</tr>
<tr>
<td>Segment 5</td>
<td>SGNO = 9 SGTY = RAMP TGSP = 450.0 RTRR = 30 P2EV = 1011 HBTY = 2</td>
</tr>
<tr>
<td>Segment 6</td>
<td>SGNO = 10 SGTY = DLL TGSP = 1010 RTRR = 30 P2EV = 0001 HBTY = 2 DLLT = 20</td>
</tr>
<tr>
<td>Segment 7</td>
<td>SGNO = 11 SGTY = RAMP TGSP = 1010 RTRR = 11 P2EV = 0001 HBTY = 2</td>
</tr>
<tr>
<td>Segment 8</td>
<td>SGNO = 12 SGTY = END CYCL = 2 FSP = 100.0</td>
</tr>
<tr>
<td>Segment 9</td>
<td></td>
</tr>
<tr>
<td>Segment 10</td>
<td></td>
</tr>
<tr>
<td>Segment 11</td>
<td></td>
</tr>
</tbody>
</table>

36
Controller Settings to Program a Profile

• From the home screen (where process value is displayed on top and set point is displayed on bottom). To get to the home screen, the up/down arrows are pressed and released simultaneously.

• Press and release “E” key twice until Prof appears on upper display”.

• Press and hold the “E” key for 4-6 seconds then release. “ConF” should appear on the upper display. If it does not, repeat the previous step.

• Press and release “enter” (key on far left) until “H.b.t.” appears on the upper display. If a holdback timer is to be used, enter the desired holdback time. (see page 33 for details on the function of the hold back band). If a hold back timer is not to be used, ignore this setting.

• Press and release until “StAr” appears on the upper display. Use the arrow keys to change the lower display to read “StSp”. Alternatively, you can set the profile to begin at whatever the current temperature is (PV), or at whatever the current setpoint is (SP1).

• Press and release once. “End” will appear on the upper display. Use the arrow keys to change the lower display to read “FSP” to have the option of entering a final setpoint for the profile. Alternatively, you can set the controller to end at the original setpoint value (SP1), or to turn off all outputs except the “end of profile relay” (Off).

Make any other menu changes that are desired, then press the up/down arrows together to return to the home screen.

Changing Profile Settings from the Home Screen

The following instructions are to set a generic ramp and soak profile

A. Press and release “E” key twice until “Prof” appears on upper display”. On the lower display, select the profile number that you wish to edit using the arrow keys.

1. Press and release “enter” (key on far left): Set Hbbd (holdback band) to desired setting. (see page 33 for details on the function of the hold back band)

2. Press and release “enter” : Set StSp (starting setpoint) to 75, or at whatever temperature you wish to start profiles at.

3. Press and release “enter” : Set RmPu (ramping process units) to HHmm (hours and minutes)

4. Press and release “enter” : Set dLLu (dwelling units) to HHmm (hours and minutes)

B. When “SG.no” appears on the upper display, use the up/down keys to select which segment you would like to edit. Profiles begin at segment zero (0).

C. With “SG.no” on the upper display, press and release the “enter” key to edit that segment’s parameters.

(Ramping Segment)

SG.no 0: After each setting, press the return key.

1. Set SGty to Ramp
2. Set tGSP 400
3. Set rtrr to 00.10
4. Set (P2EV) to 0000 (see page 40 for details regarding event outputs and PID changes)
5. Set Hbty (holdback type) to “None” (see page 33 for details on the function of the hold back band)

(Dwell Segment)

SG.no 1: After each setting, press the key.

1. Set SGty to dLL
2. Set dLLt to 03.00
3. Set the Event Outputs (P2EV) to 0000
4. Set Hbty (holdback type) to “None”
(Ramp Segment)
SG.no 2: After each setting, press the key.
1. Set SGty to Ramp
2. Set tGSP 700
3. Set rtrr to 00.10
4. Set (P2EV) to 0000
5. Set Hbty (holdback type) to None

(Dwell Segment)
SG.no 3: After each setting, press the key.
1. Set SGty to dLL
2. Set dLLt to 03.00
3. Set the Event Outputs (P2EV) to 0000
4. Set Hbty (holdback type) to “None”

(Ramp segment)
SG.no 4: After each setting, press the key.
1. Set SGty to Ramp
2. Set tGSP 1000
3. Set rtrr to 00.10
4. Set (P2EV) to 0000
5. Set Hbty (holdback type) to None

(Dwell Segment)
SG.no 5: After each setting, press the key.
1. Set SGty to dLL
2. Set dLLt to 04.00
3. Set the Event Outputs (P2EV) to 0000
4. Set Hbty (holdback type) to “None”

(Ramp Segment)
SG.no 6: After each setting, press the key.
1. Set SGty to Ramp
2. Set tGSP 1300
3. Set rtrr to 00.10
4. Set (P2EV) to 0000
5. Set Hbty (holdback type) to None

(Dwell Segment)
SG.no 7: After each setting, press the key.
1. Set SGty to dLL
2. Set dLLt to 03.00
3. Set the Event Outputs (P2EV) to 0000
4. Set Hbty (holdback type) to “None”

(End of Profile)
SG.no 8: After each setting, press the return key.
1. Set SGty to End
2. Set FSP to the final setpoint desired (75 or the desired temperature setting when the profile is complete)
3. Set CYCL to how many times you want this profile to Loop. If you only want it to run once, set to 1.

D. When finished editing the profile, press up/down keys at same time to return to home page.

E. Selecting which profile/segment to run: From the home screen, press the return Key one time. The lower display will read PX.XX. Using the up or down arrows, select the profile and segment number you wish to start at.

F. Starting a profile: From the home screen, press the enter key (“E”) once until the upper display says “mode”. Use the up/down arrows until “run” is displayed on the bottom display. Press and hold the enter key (“E”) until the “run” light illuminates. The profile is now running.
4–11 Event Outputs and PID Selection

The event outputs and PID selection are defined by parameter P2EV in the segment data and parameters OUT2, OUT3 and OUT4. There are up to 3 event outputs that can be configured. The register address # 95 shown in section 1-6 describes how to define event status and select PID values.

There are two sets of PID parameters stored in the memory. If the unit is in RUN or HOLD mode, the PID values are selected by the most significant bit of parameter P2EV (the bit all the way to the left). If the unit is in STAT mode (static or controller mode), the PID values are selected by the event input function EIFN. If the unit is in A-T mode, then PB1, TI1, and TD1 are selected. If the unit is in AT2 mode, then PB2, TI2 and TD2 are selected.

(Ramp segment)
SG.no 2: After each setting, press the key.
1. Set SGty to Ramp
2. Set tGSP 700
3. Set rttr to 00.10
4. Set (P2EV) to 0000
5. Set Hbty (holdback type) to None

(Dwell Segment)
SG.no 3: After each setting, press the key.
1. Set SGty to dLL
2. Set dLLt to 03.00
3. Set the Event Outputs (P2EV) to 0000
4. Set Hbty (holdback type) to “None”

(Ramp segment)
SG.no 4: After each setting, press the key.
1. Set SGty to Ramp
2. Set tGSP 1000
3. Set rttr to 00.10
4. Set (P2EV) to 0000
5. Set Hbty (holdback type) to None

(Dwell Segment)
SG.no 5: After each setting, press the key.
1. Set SGty to dLL
2. Set dLLt to 04.00
3. Set the Event Outputs (P2EV) to 0000
4. Set Hbty (holdback type) to “None”
Chapter 5 Applications

A heat treatment oven needs to vary temperature as a function of time. The process requires a rapid increase in temperature as it is heated, as well as a rapid decrease in temperature as it is cooled. In order to achieve a rapid increase of temperature, an additional heater is turned on during the ramp up period. This additional heater is connected to output 4. A fan is turned on to accelerate the cooling rate during the cool down period. This fan is connected to output 2. An alarm is needed to announce to the operator that the process is finished.

Since the conditions are different when an additional heater is turned on and the process has the potential to heat up much faster than with a single heater, the PID control parameters should be different than those of the PID values for using a single heater to maintain the temperature. A TEC-4500 profiling controller is perfectly suited to meet the above requirements. The system diagram is shown below.
Output 1 is used to drive the main heater, output 2 is used to drive the cooling fan, output 3 is used for the end of profile relay, and output 4 is used to drive the auxiliary heater.

The temperature profile is shown as Figure 2. To achieve this profile, the controller is configured to the following settings:

Global Data (Found in Configuration Menu)
STAR = PV (Profile will start at the current process value regardless of starting setpoint [STSP])
END = OFF (Controller will turn off at the end of the profile regardless of final setpoint [FSP])
DLAY = 0
PFR = CONT
HBT = 0,05

Profile Data
PROF = 1
STSP = 50 (Not Applicable because “STAR” is set to begin the profile at the current process value)
HBBBD = 50
RMPU = HH.MM
DLLU = HH.MM

Segment Data
<table>
<thead>
<tr>
<th>SGNO</th>
<th>SGNO = 0</th>
<th>SGNO = 1</th>
<th>SGNO = 2</th>
<th>SGNO = 3</th>
<th>SGNO = 4</th>
<th>SGNO = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGTY</td>
<td>RAMP</td>
<td></td>
<td>RAMP</td>
<td></td>
<td>RAMP</td>
<td></td>
</tr>
<tr>
<td>TGSP</td>
<td>400.0</td>
<td>P2EV = 0000</td>
<td>TGSP = 1000.0</td>
<td>P2EV = 1100</td>
<td>TGSP = 25.0</td>
<td>CYCL = 1</td>
</tr>
<tr>
<td>RTRR</td>
<td>25</td>
<td>HBTY = 3</td>
<td>RTRR = 9</td>
<td>HBTY = 3</td>
<td>RTRR = 15</td>
<td>FSP = 25.0</td>
</tr>
<tr>
<td>P2EV</td>
<td>0000</td>
<td>DLLT = 21</td>
<td>P2EV = 1100</td>
<td>DLLT = 18</td>
<td>P2EV = 0001</td>
<td>(See Note 2)</td>
</tr>
<tr>
<td>HBTY</td>
<td>1</td>
<td></td>
<td></td>
<td>HBTY = 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Second set of PID values (PID2) enabled
Output 4 enabled

Note 2: Output 2 enabled

Controller Configuration Data
INPT = K_Tc | OUT4 = EVN3
OUT1 = HTPC | OUT5 = REPV
O1FT = 0.0 | OP5L = 0.0
UNIT = °C | OP5H = 100.0
DP = 1_Dp | REL5 = 0.0
CYC1 = 18.0 | REH5 = 1000.0
OUT2 = EVN1 | ALF2 = ENDP
OUT3 = ALM2 | A2MD = NORM

Auto-tuning is performed at 400°C for PID1 and 1000°C for PID2.

NOTE: Refer to Page 10 for STAR and END options
Chapter 6 Specifications

Power
90–250 VAC, 47–63 Hz, 12VA, 5W maximum
11–26VAC/VDC, 12VA, 5W maximum

Input
Resolution: 18 bits
Sampling rate: 5 samples / second
Maximum rating: –2VDC minimum, 12VDC maximum
(1 minute for mA input)
Temperature effect:
±1.5uV/°C for all inputs except mA input
±3.0uV/°C for mA input
Sensor lead resistance effect:
T/C: 0.2uV/ohm
3-wire RTD: 2.6°C/ohm of resistance difference of two leads
2-wire RTD: 2.6°C/ohm of resistance sum of two leads
Burn-out Current: 200 mA
Common mode rejection ratio (CMRR): 120dB
Normal mode rejection ratio (NMRR): 55dB
Sensor break detection:
Sensor open for TC, RTD and mV inputs,
Sensor short for RTD input,
Below 1mA for 4–20mA input,
Below 0.25V for 1–5V input,
unavailable for other inputs.
Sensor break responding time:
Within 4 seconds for TC, RTD, and mV inputs, 0.1 seconds
for 4–20mA and 1–5V inputs.

Output 1/Output 2
Relay rating: 2A/240VAC, 200,000 life cycles for resistive load
Pulsed voltage: Source voltage 5V, current limiting resistance 66 Ohms.

Linear Output
Resolution: 15 bits
Output regulation: 0.02% for full load change
Output settling time: 0.1 sec. (stable to 99.9%)
Isolation breakdown voltage: 1000VAC
Temperature effect: ±0.01% of SPAN/°C
Triac (SSR) Output
Rating: 1A/240 VAC
Inrush current: 20A for 1 cycle
Min. load current: 50mA rms
Max. off-state leakage: 3mA rms
Max. on-state voltage: 1.5V rms
Insulation resistance: 1000Mohms min. at 500 VDC
Dielectric strength: 2500VAC for 1 minute

Sensor Characteristics:

<table>
<thead>
<tr>
<th>Type</th>
<th>Range</th>
<th>Accuracy @ 25°C</th>
<th>Input Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>-120°C to 1000°C (-184°F to 1332°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>K</td>
<td>-200°C to 1370°C (-328°F to 2548°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>T</td>
<td>-250°C to 400°C (-418°F to 752°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>E</td>
<td>-100°C to 900°C (-148°F to 1652°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>B</td>
<td>0°C to 1800°C (32°F to 3272°F)</td>
<td>±2°C (200°C to 1800°C)</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>R</td>
<td>0°C to 1767.8°C (32°F to 3214°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>S</td>
<td>0°C to 1767.8°C (32°F to 3214°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>N</td>
<td>-250°C to 1300°C (-418°F to 2372°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>L</td>
<td>-200°C to 900°C (-328°F to 1652°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>C</td>
<td>0°C to 2315°C (-32°F to 4199°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>P</td>
<td>0°C to 1395°C (32°F to 2543°F)</td>
<td>±2°C</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>PT100 (DIN)</td>
<td>-210°C to 700°C (-346°F to 1292°F)</td>
<td>±0.4°C</td>
<td>1.3 KΩ</td>
</tr>
<tr>
<td>PT100 (JIS)</td>
<td>-200°C to 600°C (-328°F to 1112°F)</td>
<td>±0.4°C</td>
<td>1.3 KΩ</td>
</tr>
<tr>
<td>mV</td>
<td>-8mV to 70mV</td>
<td>±0.05%</td>
<td>2.2 MΩ</td>
</tr>
<tr>
<td>mA</td>
<td>-3mA to 27mA</td>
<td>±0.05%</td>
<td>70.5 Ω</td>
</tr>
<tr>
<td>V</td>
<td>-1.3V to 11.5V</td>
<td>±0.05%</td>
<td>650 KΩ</td>
</tr>
</tbody>
</table>

Linear Output Characteristics

<table>
<thead>
<tr>
<th>Type</th>
<th>Zero Tolerance</th>
<th>Span Tolerance</th>
<th>Load Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–20mA</td>
<td>3.8–4mA</td>
<td>20–21mA</td>
<td>500Ω max.</td>
</tr>
<tr>
<td>0–20mA</td>
<td>0 mA</td>
<td>20–21mA</td>
<td>500Ω max.</td>
</tr>
<tr>
<td>0 – 5 V</td>
<td>0 V</td>
<td>5 – 5.25 V</td>
<td>10 KΩ min.</td>
</tr>
<tr>
<td>1 – 5 V</td>
<td>0.9 – 1 V</td>
<td>5 – 5.25 V</td>
<td>10 KΩ min.</td>
</tr>
<tr>
<td>0 – 10 V</td>
<td>0 V</td>
<td>10 – 10.5 V</td>
<td>10 KΩ min.</td>
</tr>
</tbody>
</table>

DC Voltage Supply Characteristics (Installed at Output 2)

<table>
<thead>
<tr>
<th>Type</th>
<th>Tolerance</th>
<th>Max. Output Current</th>
<th>Ripple Voltage</th>
<th>Isolation Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 V</td>
<td>± .5 V</td>
<td>25 mA</td>
<td>0.2 Vp-p</td>
<td>500 VAC</td>
</tr>
<tr>
<td>12 V</td>
<td>± .3 V</td>
<td>40 mA</td>
<td>0.1 Vp-p</td>
<td>500 VAC</td>
</tr>
<tr>
<td>5 V</td>
<td>± 0.15 V</td>
<td>80 mA</td>
<td>0.05 Vp-p</td>
<td>500 VAC</td>
</tr>
</tbody>
</table>
Alarm

Alarm relay: Form C
2A/240VAC, 200,000 life cycles for resistive load.

Alarm functions:
- Dwell timer
- Deviation high/low alarm
- Deviation band high/low alarm
- PV high/low alarm

Alarm modes:
- Normal, latching, hold, latching/hold.

Dwell timer: 0.1–4553.6 minutes

Data Communication

Interface: RS-232 (1 unit), RS-485 (up to 247 units)
Protocol: Modbus protocol RTU mode
Address: 1–247
Baud rate: 2.4–38.4Kbits/sec
Data bits: 7 or 8 bits
Parity bit: None, even or odd
Communication buffer: 256 bytes

Analog Retransmission

Output Signal: 4-20mA, 0-20mA, 0-5V, 1-5V, 0-10V
Resolution: 15 bits
Accuracy: ± 0.05% of span ± 0.0025% / °C
Load Resistance:
- 0-500 Ohms (for current output)
- 10 K Ohms minimum (for voltage output)
Output Regulation: 0.01% for full load charge
Output Settling Time: 0.1sec (stable to 99.9%)
Isolation Breakdown Voltage: 1000 Vac for 1 min.
Integral Linearity Error: ±0.005% of span
Temperature Effect: ±0.0025% of span/°C
Saturation Low: 0 mA or (0V)
Saturation High: 22.2 mA (or 5.55V, 11.1V/min)
Linear Output Range:
- 0-22.2 mA (0-20 mA or 4-20 mA)
- 0-5.55V (0-5V, 1-5V)
- 0-11.1 V (0-10V)

User Interface

Dual 4-digit LED displays
Keypad: 4 keys
Programming port: For automatic setup, calibration and testing
Communication port: RS-232 and RS-485

Control Mode

Output 1: Reverse (heating) or direct (cooling) action
Output 2: PID cooling control, cooling P band 50–300% of PB, dead band -36.0–36.0% of PB
ON-OFF: 0.1–90.0 (°F) hysteresis control (P band=0)
P or PD: 0–100.0% offset adjustment

PID: Fuzzy logic modified
- Proportional band 0.1–900.0°F
- Integral time 0–1000 seconds
- Derivative time 0–360.0 seconds

Cycle time: 0.1–90.0 seconds

Manual control: Heat (MV1) and cool (MV2)
Auto-tuning: Cold start and warm start
Failure mode: Auto-transfer to manual mode while sensor break or A-D converter damage
Ramping control:
- 0–900.0°F/minute or 0–900.0°F/hour ramp rate

Digital Filter

Function: First order
Time constant: 0.0, 0.2, 0.5, 1.2, 5.10, 20, 30, 60 seconds programmable

Profile

Number of profiles: 9
Number of Segment per profile:
- Profile 1, 2, 3, 4: 16
- Profile 5, 6, 7: 32
- Profile 8, 9: 64

Environmental and Physical

Operating temperature: -10°C to 50°C
Storage temperature: -40°C to 60°C
Humidity: 0 to 90% RH (non-condensing)
Insulation resistance: 20Mohms min. (at 500VDC)
Dielectric strength: 2000VAC, 50/60 Hz for 1 minute
Vibration resistance: 10–55 Hz, 10 m/s² for 2 hours
Shock resistance: 200m/s² (20g)
Moldings: Flame retardant polycarbonate
Dimensions:
- TEC-4500 — 3-3/4 × 3-3/4 × 2-9/16” H × W × D
- TEC-9500 — 1-7/8 × 1-7/8 × 4-9/16” H × W × D

Weight:
- TEC-4500—250 grams
- TEC-9500—150 grams

Approval Standards

Safety: UL61010C-1
EN61010-1
(IEC1010-1) Protective class:
- IP65 for panel with additional option
- IP50 for panel without additional option
- IP20 for terminals and housing with protective cover. All indoor use.
EMC: EN61326
Chapter 7 Modbus Communications

This chapter specifies the Modbus Communications protocol when an RS-232 or RS-485 interface module is installed. Only RTU mode is supported. Data is transmitted as eight-bit binary bytes with 1 start bit, 1 stop bit and optional parity bit checking (None, Even or Odd). Baud rate may be set to 2400, 4800, 9600, 14400, 19200, 28800 and 38400.

7-1 Functions Supported

Only function 03, 06, and 16 are available for this series of controllers. The message formats for each function are described as follows:

Function 03: Read Holding Registers

Query: (from Primary)
Slave address (1-247)
Function code (3)
Starting address of register Hi (0)
Starting address of register Lo (0-117, 128-143)
No. of words Hi (0)
No. of words Lo (1-118)
CRC16 Hi
CRC16 Lo

Response: (from Secondary)
Byte count
Data 1 Hi
Data 1 Lo
Data 2 Hi
Data 2 Lo
CRC16 Hi
CRC16 Lo

Function 06: Preset Single Register

Query: (from Primary)
Slave address (0-247)
Function code (6)
Register address Hi (0)
Register address Lo (0-117, 128-143)
Data Hi
Data Lo
CRC16 Hi
CRC16 Lo

Function 16: Preset Multiple Registers

Query: (from Primary)
Slave address (0-247)
Function code (16)
Starting address of register Hi (0)
Starting address of register Lo (0-117, 128-143)
No. of words Hi (0)
No. of words Lo (1-118)
Byte count (2-136)
Data 1 Hi
Data 1 Lo
Data 2 Hi
Data 2 Lo
CRC16 Hi
CRC16 Lo
7-2 Exception Responses

If the controller receives a message which contains a corrupted character (parity check error, framing error etc.), or if the CRC16 check fails, the controller ignores the message. However, if the controller receives a syntactically correct message which contains an illegal value, it will send an exception response consisting of five bytes as follows:

slave address + offset function code + exception code + CRC16 Hi + CRC16 Lo

The offset function code is obtained by adding the function code with 128 (ie. function 3 becomes H'83), and the exception code is equal to the value contained in the following table:

<table>
<thead>
<tr>
<th>Exemption Code</th>
<th>Name</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bad Function Code</td>
<td>Function code is not supported by the controller</td>
</tr>
<tr>
<td>2</td>
<td>Illegal data address</td>
<td>Register address out of range</td>
</tr>
<tr>
<td>3</td>
<td>Illegal data value</td>
<td>Data value out of range or attempt to write a read-only or protected data</td>
</tr>
</tbody>
</table>

Table 7.1 Exception Code Table

7-3 Parameter Table

You can refer to section 1-6 for the parameter description. The register address for each parameter is shown in the first column of the table.

The register 133 for EROR is the error code. The error code description is shown in Table A.1. The register 140 for PROG is the program code of the product. The program code is 37.xx for TEC-4500 and 38.xx for TEC-9500 where xx denotes the software version number. For example, PROG = 37.12 means that the controller is TEC-4500 with software version 12.

7-4 Number System

The values stored in registers are based on a 2's complement format. The relation between the value of a number in the register and its actual value is shown as following table:

<table>
<thead>
<tr>
<th>Number in Register</th>
<th>Actual Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>65535</td>
<td>-1</td>
</tr>
<tr>
<td>65534</td>
<td>-2</td>
</tr>
<tr>
<td>50000</td>
<td>-15536</td>
</tr>
<tr>
<td>32769</td>
<td>-32767</td>
</tr>
<tr>
<td>32768</td>
<td>-32768</td>
</tr>
<tr>
<td>32767</td>
<td>32767</td>
</tr>
<tr>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 7.2 Number Conversion Table
7-5 Communication Example

Example 1: Read the real time data (register 128–141)

<table>
<thead>
<tr>
<th>Query</th>
<th>03</th>
<th>00</th>
<th>0x80</th>
<th>00</th>
<th>0x0E</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Starting Addr.</td>
<td>No. of words</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2: Read segment 2 data of profile 3

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>0x56</th>
<th>00</th>
<th>03</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Starting Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>0x58</th>
<th>00</th>
<th>02</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Register Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>03</th>
<th>00</th>
<th>0x5C</th>
<th>00</th>
<th>09</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Starting Addr.</td>
<td>No. of words</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 3: Perform reset function

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>0x8E</th>
<th>0x68</th>
<th>0x25</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Register Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 4: Enter auto-tuning mode

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>0x0B</th>
<th>00</th>
<th>03</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Register Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 5: Enter manual mode

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>0x0B</th>
<th>00</th>
<th>05</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Register Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 6: Modify the Calibration coefficient

Preset the CMND register with 26668 before attempting to change the calibration coefficient.

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>0x8E</th>
<th>0x68</th>
<th>0x2C</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Register Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 7: Start from segment 4 to run profile 3

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>0x0B</th>
<th>00</th>
<th>00</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Register Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>01</th>
<th>01</th>
<th>0x30</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Register Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 8: Hold the current profile

<table>
<thead>
<tr>
<th>Query</th>
<th>06</th>
<th>00</th>
<th>0x0B</th>
<th>00</th>
<th>01</th>
<th>Hi</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr.</td>
<td>Func</td>
<td>Register Addr.</td>
<td>Data Hi / Lo</td>
<td>CRC16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 9: Create the profile which is specified in example of Fig. 4.7

<table>
<thead>
<tr>
<th>Addr. Func.</th>
<th>Starting Addr.</th>
<th>No. of words</th>
<th>Bytes</th>
<th>STAR = 2</th>
<th>END = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 00 01 00 00 02</td>
<td>PFR = 1</td>
<td>HBT = 1.00</td>
<td>CRC16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Addr. Func.</th>
<th>Starting Addr.</th>
<th>No. of words</th>
<th>Bytes</th>
<th>PROF = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 0x32 00 0x4A 00 00 00 00</td>
<td>HBB = 5.0</td>
<td>STSP = 25.0</td>
<td>DLLU = 0</td>
<td>CRC16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Addr. Func.</th>
<th>Starting Addr.</th>
<th>No. of words</th>
<th>Bytes</th>
<th>SGNO = 0</th>
<th>SGTY = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00 0x0C 00 0x0F 00 00 00 01</td>
<td>TGSP = 150.0</td>
<td>RTRR = 15</td>
<td>P2EV = 0</td>
<td>HBTY = 1</td>
<td>CRC16</td>
</tr>
</tbody>
</table>

| Addr. Func. | Starting Addr. | No. of words | Bytes | SGNO = 1 | SGTY = 1 | CRC16 |
|-------------|----------------|--------------|-------|----------|---------|
| 0x0E 0x5F 00 0x03 06 00 00 00 03 0x14 | TGSP = 250.0 | RTRR = 20 | P2EV = 0 | HBTY = 1 | CRC16 |

| Addr. Func. | Starting Addr. | No. of words | Bytes | SGNO = 3 | SGTY = 1 | CRC16 |
|-------------|----------------|--------------|-------|----------|---------|
| 0x09 0xC4 00 0x14 00 00 00 01 | TGSP = 250.0 | RTRR = 20 | P2EV = 0 | HBTY = 1 | CRC16 |

<table>
<thead>
<tr>
<th>Addr. Func.</th>
<th>Starting Addr.</th>
<th>No. of words</th>
<th>Bytes</th>
<th>SGNO = 0</th>
<th>SGTY = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 0x09 0x14 00 0x04 00 00 03 0x03</td>
<td>TGSP = 250.0</td>
<td>RTRR = 20</td>
<td>P2EV = 0</td>
<td>HBTY = 1</td>
<td>CRC16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Addr. Func.</th>
<th>Starting Addr.</th>
<th>No. of words</th>
<th>Bytes</th>
<th>SGNO = 3</th>
<th>SGTY = 3</th>
<th>DLLU = 20</th>
<th>CRC16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x09 0x14 00 0x04 00 00 03 0x03</td>
<td>TGSP = 250.0</td>
<td>RTRR = 20</td>
<td>P2EV = 0</td>
<td>HBTY = 1</td>
<td>CRC16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Addr. Func. | Starting Addr. | No. of words | Bytes | SGNO = 10 | SGTY = 1 | CRC16 |
|-------------|----------------|--------------|-------|-----------|---------|
| 0x09 0x14 00 0x04 00 00 03 0x03 | TGSP = 250.0 | RTRR = 20 | P2EV = 0 | HBTY = 1 | CRC16 |

| Addr. Func. | Starting Addr. | No. of words | Bytes | SGNO = 11 | SGTY = 0 | CRC16 |
|-------------|----------------|--------------|-------|-----------|---------|
| 0x09 0x14 00 0x04 00 00 03 0x03 | TGSP = 250.0 | RTRR = 20 | P2EV = 0 | HBTY = 1 | CRC16 |
Table A.1 Error Codes and Corrective Actions

Appendix A-1

Table A-1 Error Codes and Corrective Actions

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Display Symbol</th>
<th>Error Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ErO4</td>
<td>Illegal setup values been used; Before COOL is used for OUT2, DIRT (cooling action) has already been used for OUT1, or PID mode is not used for OUT1 (that is PB = 0, and / or TI = 0)</td>
<td>Check and correct setup values of OUT2, PB, TI and OUT1. IF OUT2 is required for cooling control, the control should use PID mode (PB ≠ 0, TI ≠ 0) and OUT1 should use reverse mode (heating action), otherwise, don't use OUT2 for cooling control.</td>
</tr>
<tr>
<td>10</td>
<td>Eri0</td>
<td>Communication error: bad function code</td>
<td>Correct the communication software to meet the protocol requirements.</td>
</tr>
<tr>
<td>11</td>
<td>Er i1</td>
<td>Communication error: register address out of range</td>
<td>Don't issue an over-range register address to the slave.</td>
</tr>
<tr>
<td>14</td>
<td>Er i4</td>
<td>Communication error: attempt to write a read-only data or a protected data</td>
<td>Don't write a read-only data or a protected data to the slave.</td>
</tr>
<tr>
<td>15</td>
<td>Er i5</td>
<td>Communication error: write a value which is out of range to a register</td>
<td>Don't write an over-range data to the slave register.</td>
</tr>
<tr>
<td>25</td>
<td>HbEr</td>
<td>Holdback time out</td>
<td>Evaluate validity of the PID values</td>
</tr>
<tr>
<td>26</td>
<td>RbEr</td>
<td>Fail to perform auto-tuning function</td>
<td>1. The PID values obtained after auto-tuning procedure are out of range. Retry auto-tuning. 2. Don't change set point value during auto-tuning procedure. 3. Use manual tuning instead of auto-tuning. 4. Don't set a zero value for PB. 5. Don't set a zero value for TI. 6. Touch RESET key.</td>
</tr>
<tr>
<td>27</td>
<td>CaEr</td>
<td>You have selected an input type which was not calibrated</td>
<td>Calibrate the new input type or change input type to the calibrated one.</td>
</tr>
<tr>
<td>29</td>
<td>EEEPEE</td>
<td>EEPROM can't be written correctly</td>
<td>Return to factory for repair.</td>
</tr>
<tr>
<td>30</td>
<td>EJJER</td>
<td>Cold junction compensation for thermocouple malfunction</td>
<td>Return to factory for repair.</td>
</tr>
<tr>
<td>39</td>
<td>SbEr</td>
<td>Input sensor break, or input current below 1 mA If 4-20 mA is selected, or input voltage below 0.25V if 1 - 5V is selected</td>
<td>Replace input sensor.</td>
</tr>
<tr>
<td>40</td>
<td>RdEr</td>
<td>A to D converter or related component(s) malfunction</td>
<td>Return to factory for repair.</td>
</tr>
</tbody>
</table>
Note: Information in this manual was deemed correct at the time of printing. The policy of Tempco is one of continuous development and product improvement, and we reserve the right to modify specifications and designs without prior notice. Not responsible for typographical errors.
Custom Manufacturer Since 1972

HEAT THINGS UP!
With Thousands of Design Variations
We Make Everything You Need.

Band Heaters Cartridge Heaters
Cast-In Heaters Coil & Cable Heaters
Radiant Heaters Strip Heaters
Flexible Heaters Tubular Heaters
Process Heaters Instrumentation
Temperature Control Temperature Sensors

© Copyright 2023 TEHC. All Rights Reserved